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Lo más importante para avanzar en la ciencia es la curiosidad. No pretendo
aseverar que el conocimiento no es importante, pero un conocimiento demasiado

arraigado puede provocar el efecto contrario, sobretodo si no es correcto, o al
menos no lo es del todo. Cuestionar el conocimiento ha sido fuente de

inagotables descubrimientos, de modo que es esencial que lo sigamos haciendo.
Es posible aprender por casualidad, por imitación, o por otras causas, pero sin

curiosidad no puede haber avances significativos.

Deseo dedicar este trabajo a un pequeño curioso, mi hijo Aimar, con la
esperanza de que algún día pueda servirle de inspiración, y que ames la ciencia

tanto como yo la amo. Aprende de todo. Cuestiónalo todo. Y sobretodo, se
curioso.

Zure aita
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Abstract

Measuring semantic similarity between textual items (words, sentences, para-
graphs or even documents) is a very important research area in Natural Language
Processing (NLP). It has many practical applications in other NLP tasks such as
Word Sense Disambiguation, Textual Entailment, Paraphrase detection, Machine
Translation, Summarization, Information Retrieval or Question Answering.

The overarching goal of this thesis is to advance on computational models of
meaning and their evaluation. To achieve this goal we define two tasks and de-
velop state-of-the-art systems that tackle both tasks: Semantic Textual Similarity
(STS) and Typed Similarity.

STS aims to measure the degree of semantic equivalence between two sen-
tences by assigning graded similarity values. This graded similarity captures the
notion of intermediate shades of similarity ranging from pairs of text that differ
only in minor nuanced aspects of meaning, in relatively important differences,
down to pairs that share only some details or that only have in common being
about the same topic. In the scope of this research, we have collected pairs of
sentences to construct datasets for STS, a total of 15,436 pairs of sentences, being
by far the largest collection of data for STS.

Using these new datasets for STS we have designed, constructed and evaluated
a new approach to combine knowledge-based and corpus-based methods using a
cube. This new system for STS is on par with state-of-the-art approaches that
make use of Machine Learning (ML) without using any of it, but ML can be used
on this system, improving the results.

Typed Similarity tries to identify the type of relation that holds between a pair

vii



of similar items in a digital library. Being able to provide a reason why items
are similar has applications in recommendation, personalization, and search. We
investigate the problem within the context of Europeana, a large digital library
containing items related to cultural heritage. A range of types of similarity in this
collection were identified and a set of 1,500 pairs of items from the collection
were annotated using crowdsourcing.

Finally, we present three systems capable of resolving the Typed Similarity
task: a baseline approach, a knowledge-based approach and a ML system. The
high results obtained by our systems suggests that this technology is close to prac-
tical applications. In fact, the system based on ML resulted in a real-world appli-
cation to recommend similar items to users in an online digital library.
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1
Introduction

This introductory chapter is organized in four sections. First, Section 1.1 intro-
duces the research framework and presents some examples to introduce the reader
in the notion of semantic similarity. After that, Section 1.2 describes the main
goals of this research, and Section 1.3 presents the main contributions of the re-
search. Finally, in Section 1.4 we describe the structure of the rest of the docu-
ment.

1.1 Research framework
Communicating verbally with machines has been one of the main objectives since
the birth of computing. In 1968 Arthur C. Clarke made half the planet’s imagi-
nation run free with his novel ’2001: A Space Odyssey’, which was transferred
concurrently to the big screen by Stanley Kubrik with great success. Computer
science had barely taken its first steps (the first microprocessor had not been de-
veloped yet), but the idea of an artificial intelligence like HAL 9000 had already
seduced a generation that had not even touched a personal computer.

As usual in scenarios like this, well into 2017, we are far from replicating the
communicative skills that HAL 9000 was supossed to have in 2001. Understand-
ing human language may seem very simple, people do it every day, but it is a very
difficult task for machines. The language is full of phenomena that make compre-
hension very complex: polysemy, irony, sarcasm, double meanings, multiple ways
of saying the same thing... And if this were not enough, understanding depends on
our knowledge of the world, which we use to reason and understand each other,
in a process that we do practically without realizing it. A clear example could be
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CHAPTER 1. INTRODUCTION

(a) Most probable interpretation for the sentence ’Fred saw a plane flying over New
York’.

(b) Very unlikely interpretation for the sentence ’Fred saw a train flying over New York’.

(c) Most probable interpretation for the sentence ’Fred saw a train flying over New York’:
a plane flying over New York and someone seeing a train on the ground.

Figure 1.1 – Example of possible interpretations for two almost identical sen-
tences.
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1.1. RESEARCH FRAMEWORK

the following two sentences:

• Fred saw a plane flying over New York.

• Fred saw a train flying over New York.

Although both sentences only change in one word, they have very different
meanings. It is easy for us to imagine a plane flying over New York (Figure 1.1a),
but as we read the second sentence, we soon realize that a train does not fly (Figure
1.1b), and therefore it means something different, such as a plane flying over New
York with a person inside it (because people do not fly either), who is seeing a train
from the plane window (Figure 1.1c). Making these kinds of inferences is very
complicated for computers, but relatively simple for people. Another example is
the following:

• Fred saw the plane flying over Berna.

• Fred watched the jet soaring over the capital of Switzerland.

The previous two sentences are very similar even though they are realized very
differently. It only seems that the second sentence is more precise than the first
one. But both meanings are compatible. A computer system capable of recog-
nizing that ’saw’ and ’watched’, ’plane’ and ’jet’, ’flying’ and ’soaring’ are very
similar and that ’Berna’ is the ’capital of Switzerland’ could evaluate correctly
that these two sentences are equivalent.

These measures of equivalence of meaning are useful for many tools, for ex-
ample the well-known Siri, iOS’ personal assistant, or to evaluate voice com-
mands in a home automation system, so that the house can deduce that the sen-
tence ’I need more light’ can mean ’Raise the blinds’ or ’Turn on the lights’,
depending on the light conditions in the outside at that moment. Other possible
applications are helping the elderly, since in general people in this age range have
greater difficulties in learning and using complicated user devices and may pre-
fer voice commands, or in the teaching domain, where a STS system is capable
to evaluate whether the student’s response mean the same as the correct answer
assigned by the teacher, facilitating the task to the teacher. STS can also help
in Machine Translation, increasing the variability of the translations, generating
sentences written differently but without changing the original meaning. In a sim-
ilar way, STS can help in other tasks such as Plagiarism detection or Question
Answering.

3



CHAPTER 1. INTRODUCTION

1.2 Main goals

In linguistics, semantics is the study of the meaning of words, their structure, and
their relationships with other words. Meaning is the mental representation of an
object or concept, what we see in our mind when we see or hear it. Evaluating
the meaning is an important part of Natural Language Processing (NLP), a field
of computer science, artificial intelligence and computational linguistics with the
objective of understanding and generating human language. Natural Language
Understanding (NLU) consist of a program reading a text and constructing from
it a conceptual representation of its meaning. NLU requires multiple processes in-
cluding morphological, syntactic, semantic and pragmatic analysis of languages.
The overarching goal of this thesis is to advance on computational models of
meaning and their evaluation.

Semantic Textual Similarity (STS) is a task originally presented in 2012 at
the International Workshop on Semantic Evaluation (SemEval 2012), which ad-
dresses one of the aspects of NLP and artificial intelligence that will allow ma-
chines to communicate naturally with people: the comparison of meaning. Given
two sentences, knowing if both have the same meaning or not is crucial for good
communication. But the meaning is not white or black, it has a whole variety of
gray tones. STS aims to automatically evaluate the similarity between sentences
in a scale from 0 to 5, and in which each range represents in an easily understand-
able way the differences that make those two sentences equivalent or not. The first
goal of this thesis is to design the STS task and to create and annotate datasets for
it.

Another goal of this thesis is to investigate how to create systems capable to
solve this task. There are many techniques and resources that are useful for that
purpose. Among resources, WordNet, Wikipedia and ontologies such as SUMO
allow to address many of the difficulties mentioned above such as polysemy, de-
tection of entities (people, companies, etc.) or reasoning. Recently, thanks to
the rise of Deep Learning, new useful resources (such as word embeddings) have
been automatically generated, improving the performance of STS systems. These
word embeddings are capable of storing the semantic characteristics of words in
a vector, where the vectors of words with similar meanings are closer and differ-
ent ones further away. These new systems analyse the context in which words
appear in a very large corpora, and assuming that similar words appear in similar
contexts, places each word in an N-dimensional space, keeping the premise that
similar words should remain close one to another. Once these vectors are gener-
ated the similarity between words can be computed by calculating the cosine of

4
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their vectors.
In addition to comparing the meaning of two sentences, humans are able to

reason why or in what sense those sentences (e.g. a description of an object) are
similar. In other words, similarity can be measured in a generic way, as we have
seen so far, but can also be decomposed into different types. Measuring the type of
similarity is very useful for recommendation systems. With this goal, this thesis
also presents another SemEval task, Typed Similarity, that aims to elucidate the
type of similarity between items on an online portal of cultural heritage items. In
this task eight different types of similarity are defined, like similar author, similar
location or similar time period.

Within the framework of this task, we also present a system capable of provid-
ing similar items to users based on the similarity type. This way, users can follow
a proposed path, visiting the items of the online museum according to his pref-
erences (for example visiting objects of similar periods or similar civilizations).
This is useful for day-to-day applications, like the recommendation systems of
many online shopping platforms such as Amazon or Ebay. For example, if you
visit a book on these platforms the recommender system can offer you books with
a similar topic, that takes place at a similar period or written by similar authors,
not just books by the same author or the same publisher. The last goal of this
research is to design a system capable of identifying similarity types.

In summary, throughout this thesis STS and Typed Similarity tasks are de-
signed, their principles are defined, and the necessary datasets are created. Fol-
lowing to the definition of the tasks, we present systems capable of solving these
tasks with a high performance.

1.3 Main contributions
When the work presented in this thesis began, STS was not defined yet. In this
period it has become a recognized task with great acceptance. In addition to par-
ticipating in the design and organization of the STS task, my contributions include
the design and organization of Typed Similarity. Throughout this time, various as-
pects of the task have been polished, and we have been able to reach consensus
with the scientific community on the task.

This research have demonstrated that the task is feasible, and several systems
capable of evaluating sentences have been created within the framework estab-
lished by STS. I have also provided one system for STS and another for Typed
Similarity. Both systems achieve state-of-the art results, and the system for typed
similarity has proved to have practical applications in the real world.

5



CHAPTER 1. INTRODUCTION

Summarized, the main contributions of this thesis are:

• Definition of STS: My contribution involves the definition of STS as a task
where given two snippets of text, system assign a graded similarity score
ranging from 0 to 5. STS has achieved a great acceptance, becoming the
most popular task at SemEval, also being used to evaluate sentence repre-
sentations or sentence embeddings.

• Definition of Typed Similarity, a new task related to STS. Typed Similarity
defines eight similarity types and tries to determine these types of similarity
between cultural heritage items in an online digital library.

• Datasets creation: We have collected pairs of sentences to construct datasets
for STS, which after five years make a total of 15,436 pairs of sentences,
being by far the largest collection of data for STS. These datasets are man-
ually annotated with high quality using Crowdsourcing. This involved the
design and implementation of gold-standard pairs to control the annotations
from turkers, and mechanisms to filter them detecting outlayers (or bad an-
notators) and improve inter-tagger correlations. We automatically gathered
cultural heritage items pairs to construct the datasets for Typed Similarity,
and annotated them in the same way as STS dataset. All these datasets are
freely available in the STS Wiki1.

• We have designed, constructed and evaluated a new approach to combine
knowledge-based and corpus-based methods using a cube. This new sys-
tem is on par with ML approaches without using any of it, and using ML
on this system improves the results further. As part of this work we have
analysed the most used resources, methods, and algorithms to perform STS.
We did intensive experiments to evaluate the quality and usefulness of these
resources. Additionally, we have carried out a comparison between our sys-
tem based on the cube and the typical STS systems, and an analysis of the
main differences.

• We have designed, constructed and evaluated a system capable of resolv-
ing the Typed Similarity task. This system resulted in a real-world appli-
cation to recommend similar items to users in an online digital library. Error
analysis is carried out for the Typed Similarity system, with the objective of
identifying the main issues that can help in the design of better systems for
the task in the future.

1http://ixa2.si.ehu.es/stswiki/index.php/Main_Page
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• The organization of both tasks, which includes submitting the proposal to
SemEval organizers, announcing it to participants, preparing the Train and
Test sets for each of the year (including instructions), evaluating participant
systems, performing an analysis of system and results, and writing the final
task paper.

1.4 Document structure
This dissertation is organized in the following chapters:

• Chapter 2: Background
This chapter provides an in depth review of different methods and resources
to compute the semantic similarity between textual items. Furthermore, it
presents several methods proposed for computing semantic similarity be-
tween words or texts, and introduces the dataset for semantic similarity
available prior to the beginning of this thesis. Finally, it overviews the cur-
rent best systems for semantic similarity.

• Chapter 3: Semantic Textual Similarity
This chapter describes the Semantic Textual Similarity (STS) task.

• Chapter 4: Cubes for Semantic Textual Similarity
This chapter presents a novel system for STS that can combine several re-
sources, forming a cube where each resource is added as a layers, and its
comparison with the state-of-the-art.

• Chapter 5: Typed Similarity
This chapter presents the Typed Similarity (Typed STS) task, that aims to
identify the type of relation that holds between a pair of similar items in a
digital library.

• Chapter 6: A System for Typed Similarity
This chapter describes a system for identifying Typed Similarity, and how
it is used in Europeana to recommend similar items to the users.

• Chapter 7: Conclusion and Future Work
This chapter draws the main concluding remarks and provide some lines for
future research.

7





2
Background

This chapter provides a revision of the state-of-the-art on computational lexical
semantics for Natural Language Processing (NLP) and presents several methods
proposed for computing semantic similarity between words or texts. First we
briefly introduce semantics and semantic similarity in Sections 2.1 and 2.2. Next,
we describe Knowledge-based and Corpus-based similarity in Sections 2.3 and
2.4, and how to combine them in Section 2.5. In Section 2.6 we explain how
to extend word similarity to textual similarity. Next, Section 2.7 introduces the
datasets for semantic similarity available prior to the beginning of this thesis. In
Section 2.8 we review the current best systems for semantic similarity. Finally,
Section 2.9 draws some conclusions.

2.1 Semantics
Linguistics is the study of the sounds, grammar and meaning in languages. The
final objective in linguistics is to explain why patterns in languages are as they
are. Linguistics tries to explain why phenomenons occur in languages using a
descriptive approach, and find the rules people unconsciously follow when they
speak and write. On the other hand, prescriptive approaches try to describe how
people should speak and write and what rules of language people should know. In
linguistics, semantics is the study of the meaning of words, their structure, and
their relationships with other words.

Meaning is the mental representation of an object or concept, what we see
in our mind when we see or hear it. The complete meaning of a word is always
contextual, and no study of meaning separated from context can be taken seriously

9



CHAPTER 2. BACKGROUND

(Firth 1935). In general we can distinguish two types of meaning, lexical meaning
and grammatical meaning. The former is the meaning of all words that contain
a lexeme: nouns, verbs, adjectives and some adverbs. Grammatical meaning is
the meaning of a word in relation to its function in the sentence, such as articles,
determiners, prepositions or pronouns.

Lexical Semantics is a subfield of semantics that studies the meaning of indi-
vidual words and their relationships. In other words, the study of Lexical Units
(also called syntactic atoms). Lexical Units are the basic elements of a lexicon,
the vocabulary of a language, and they constitute the minimal meaning units.

Some words can have several different meanings, also known as senses. This
phenomenon is called polysemy. An example of polysemy is the word bank, which
can mean ’a huge bank of earth’ or a ’financial institution’. Polysemy is the
opposite of monosemy, only having one meaning per word. The sense of a word
is a widely accepted meaning for that word. For example, these are the senses or
meanings for the word bank in WordNet 3.0 (Fellbaum 1998):

1. sloping land (especially the slope beside a body of water): they pulled the
canoe up on the bank.

2. a financial institution that accepts deposits and channels the money into
lending activities: he cashed a check at the bank.

3. a long ridge or pile: a huge bank of earth.

4. an arrangement of similar objects in a row or in tiers: he operated a bank of
switches.

5. a supply or stock held in reserve for future use (especially in emergencies)

6. the funds held by a gambling house or the dealer in some gambling games:
he tried to break the bank at Monte Carlo.

7. a slope in the turn of a road or track; the outside is higher than the inside in
order to reduce the effects of centrifugal force

8. a container (usually with a slot in the top) for keeping money at home: the
coin bank was empty.

9. a building in which the business of banking transacted: the bank is on the
corner of Nassau and Witherspoon.

10
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10. a flight maneuver; aircraft tips laterally about its longitudinal axis (espe-
cially in turning): the plane went into a steep bank.

Another example of a polysemic word is wood:

• a piece of a tree.

• a geographical area with many trees.

When humans read sentences involving the words bank or wood (and other
words) they find it easy to infer their meaning through its context, by using their
knowledge of the world. Most words are polysemic, and the more polysemic a
word is, the more frequently it is used (Zipf 1932).

Homonymy is a phenomenon that is often confused with polysemy. Homony-
mous words are those that are pronounced in the same way, but whose meaning is
different. These words can be spelled the same or not, such as ’bark’ (the sound
of a dog) and ’bark’ (the skin of a tree), or ’too’ and ’two’. Consider as another
example the following sentences:

• I traveled by train from Barcelona to Donostia.

• Mikel and Joseba train every day at the gym.

The word train has different meaning in the above sentences:

• a series of connected railway carriages or wagons moved by a locomotive
or by integral motors.

• to make (a person) fit by proper exercise, diet, practice, etc., as for an ath-
letic performance.

Therefore, we can say that there are words that are spelled in the same way
but with different senses. Basically, a sense is one of the possible meanings of a
given word. If two different senses of a word are not semantically related between
them we are talking about a homonymy relation, as the example with train we just
saw. Instead, if two senses of a word are semantically related we are talking about
polysemy.

When the meaning of a sentence does not change when substituting a word
for a different one they are said to be synonymous. It is not clear if true synonyms
exist, since although in most contexts one word can substitute another, there may
be some context where they are not interchangeable.

11
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Antonymy is the opposite of synonymy. Two words are antonyms if the mean-
ing of one is the opposite of the other, as ’expensive’ and ’cheap’.

Meaning has a hierarchical structure, and the meaning of some words is in-
cluded in other words, in a phenomenon called hypernymy. When the meaning of
a word includes the meaning of another word we say that the first is the hyper-
nym of the second. For example, ’animal’ is the hypernym of ’cat’. Therefore, a
hypernym is a more general and applicable term (less concrete).

Hyponymy is the inverse phenomenon of hypernymy. However, a hyponym
may be the hypernym of other words. For example, ’mammal’ is hyponym of
’animal’, but hypernym of ’cat’.

Meronymy occurs when a word is part of another word. For example, ’finger’
is a meronym of ’hand’, and ’tire’ is a meronym of ’car’.

Finally, we can say that concepts that share some meaning are semantically
similar. For example, ’dog’ and ’cat’ are more semantically similar than ’house’
and ’train’. But if we compare ’dog’ and ’cat’ with ’car’ and ’bus’ the thing is not
so clear: ’cat’ and ’dog’ are pets, and both ’car’ and ’bus’ are on wheels means of
transportation, so that both pairs of words are very similar between them.

Measuring semantic similarity is very useful for several NLP tasks, such as
Information Retrieval, Text Mining, Machine Translation and evaluation, Summa-
rization, Machine Reading, Deep Question Answering and many others.

In the next sections we are going to discuss different methods and techniques
to estimate the semantic similarity between words, and how to extend these meth-
ods to also measure the semantic similarity between sentences.

2.2 Word Similarity
It is commonly accepted that there are at least two kinds of methods to determine
whether two words share some kind of meaning. The first ones are knowledge-
based word similarity methods, which are based on structured resources such as
monolingual or bilingual dictionaries, thesaurus or encyclopedias. Knowledge-
bases are very useful because they constitute a highly structured and relevant
source of information about words and meanings. Some of the more employed re-
sources of these type are WordNet (Fellbaum 1998) and Wikipedia1. Algorithms
based on these kind of resources often use the hypernym/hyponym relations (e.g.
in WordNet) to compute the semantic between two words. These types of re-
sources are more detailed in Section 2.3.

1http://www.wikipedia.org
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Corpus-based word similarity methods use large corpora as a source data
for word similarity. The possibility of applying descriptive approaches using sta-
tistical techniques, having information of the frequency of use, etc. is crucial
for extracting important information related to linguistic phenomena. Thus, un-
structured lexical resources such as monolingual and bilingual corpora provide
an additional though less organized source for word similarity. A widely used
representation of features in a document (or corpus) is the Vector Space Model
(VSM) (Salton et al. 1975). Corpus-based word similarity methods are presented
in Section 2.4.

These techniques are applied at word level, and very few at sentence level.
This is because compositionality, which makes calculating the similarities be-
tween sentences very complex and difficult. For instance, the composed meaning
of the words ’apple’ and ’big’ might not be ’large apple’, but ’New York’. Com-
positionality is important as it allows to link ’capital of Switzerland’ to ’Berna’.
In this thesis we do not explicitly cover compositionality, but it is implicit in the
system presented in Chapter 4.

In the next three sections we describe resources and methods of Knowledge-
based (Section 2.3) and Corpus-based (Section 2.4) word similarity, and how to
combine them (Section 2.5). Next, in Section 2.6 we describe the most common
approaches to measure the similarity for longer snippets of text using word simi-
larity metrics.

2.3 Knowledge-based word similarity

In NLP, the use of on-line dictionaries or Machine Readable Dictionaries (MRDs),
a term coined in the 80s referring to dictionaries for human use in digital support,
has been studied extensively in the hope that monolingual and bilingual dictio-
naries might provide a way out of the semantic similarity. Although MRDs are
built for human use and they deal with problems such as inconsistencies, too fine-
grained ambiguity, circular definitions, etc., MRDs seemed to offer the possibility
for enormous savings in time and human effort (Zernik 1991; Briscoe and Bogu-
raev 1989; Wilks et al. 1996; Rigau et al. 1998).

13
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2.3.1 Knowledge-bases and resources

WordNet2 (Miller et al. 1991; Fellbaum 1998), is a lexical database for the En-
glish language. Its design is inspired by current psycholinguistic and computa-
tional theories of human lexical memory. WordNet is by far the most widely-used
lexical knowledge base. It contains manually coded information about English
nouns, verbs, adjectives and adverbs, and is organized around the notion of synset.
A synset is a set of words with the same part-of-speech that can be interchanged
in a certain context. For example, 〈student, pupil, educatee〉 form a synset
because they can be used to refer to the same concept. A synset is often further
described by a gloss, in the case of the above synset ’a learner who is enrolled
in an educational institution’, and by explicit semantic relations to other synsets.
Each synset represents a concept which is related to other concepts by means of 26
semantic relationships, including hypernymy/hyponymy, meronymy/holonymy,
antonymy, entailment, etc (see Section 2.1). Synsets are interlinked by means
of conceptual-semantic and lexical relations. The resulting network meaningfully
relates words and concepts, and its structure makes it a useful tool for compu-
tational linguistics and natural language processing. It is used in a wide variety
of NLP tasks such as Information Extraction (Stevenson and Greenwood 2006),
Automatic Summaritzation (Chaves 2001), Question Answering (Moldovan and
Rus 2001), Lexical Expansion (Parapar et al. 2005) as a knowledge resource or a
dictionary.

WordNet was created and is being maintained at the Cognitive Science Labo-
ratory of Princeton University under the direction of psychology professor George
A. Miller. Its development began in 1985. Over the years, the project received
funding from different government agencies. WordNet is freely and publicly
available for download. The actual version of WordNet is 3.1, but this version
is available only online. The latest WordNet version for Unix-like systems is 3.0,
and contains 82,115 nouns, 13,767 verbs, 18,156 adjectives and 3,621 adverbs,
totalling 117,659 synsets. From version 1.5 to 3.0, WordNet has been increased
by nearly 26,000 new synsets.

Wikipedia3 is a free online encyclopedia that aims to allow anyone to edit ar-
ticles. Wikipedia is available in 295 languages. The english version of Wikipedia
contains more than 5,363,191 articles, being the largest among the 295 languages.

The content of Wikipedia can be classified into articles, categories, redirec-
tions and disambiguation pages. Using this structure we can construct a graph

2http://wordnet.princeton.edu
3https://www.wikipedia.org
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using the articles and categories as nodes and the links as edges. To gather these
links it is necessary search in the text of each article for hyperlink to other articles
or categories. Category pages also contain hyperlinks to other category pages,
constructing the category structure. Additionally, it is also possible to create a
dictionary with all the string in Wikipedia. In this dictionary, each entry would
contain all possible articles that string could be referencing. These articles can
be weighted by their probability to be the actual reference of the entry in the dic-
tionary. (e.g In the dictionary entry for ’Nadal’ the article ’Rafael Nadal’ should
have higher probability than ’Lymari Nadal’).

2.3.2 WordNet-based methods
One of the most important and popular knowledge-bases is WordNet. This section
illustrates some of the best known techniques based on WordNet that allows us to
calculate the similarity between words:

• Path-Length Measure: This algorithm is based on the principal assump-
tion that the shorter the path between two words is, more similar they are
between them.

• Leacock-Chodorow Measure: This method is an extension to the Path-
Length measure which scales the path length by the depth of the hierarchy,
defined as the length of the longest path from a leaf node to the root of the
hierarchy (Leacock and Chodorow 1998).

• Resnik Similarity Measure: This algorithm uses the structure of the the-
saurus and combines it with probabilistic information extracted from cor-
pora. Resnik’s similarity measure suposes that the semantic similarity of
two concepts is proportional to the amount of information they share (Resnik
1995).

• Lin Similarity Measure: is an extension the Resnik similarity, introducing
the commonality and difference measures. Commonality is a measure that
indicates how much two concepts have in common. Difference is the mea-
sure that indicates that he more differences are between two concepts, the
more different they are (Lin 1997).

• Jiang-Conrath Distance: This technique measures unrelatedness between
two concepts (Jiang and Conrath 1997).
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• Hirst-St.Onge Measure: The algorithm classifies the WordNet relations in
three categories: up, down or horizontal. The are also four levels of related-
ness: extra strong, strong, medium strong and weak. The extra strong and
strong relationship involve words of the same concept (horizontal relation).
(Hirst and St-Onge 1998) calculates the score of the relation with the path
length between the concepts and the number of changes of direction in that
path.

Moreover, (Pedersen et al. 2004 created a freely available software package
that makes it possible to measure the semantic similarity and relatedness between
a pair of concepts (or synsets). It provides six measures of similarity, and three
measures of relatedness, all of which are based on WordNet (includes all methods
shown above). These measures are implemented as Perl modules called Word-
Net::Similarity4 which take as input two concepts, and return a numeric value that
represents the degree to which they are similar.

Extended Lesk Measure

The Lesk Algorithm4 (Lesk 1986) is an algorithm based on two assumptions. The
first one is that concepts that are nearby between them have more possibilities to
share some topic. The second is that related senses can be identified searching
overlaps in their glosses.

The algorithm computes simple unigram overlaps in the glosses that are con-
tained in WordNet. The basic idea behind the Extended Lesk measure (Patwardhan
et al. 2003) is that two concepts in a dictionary are similar if they share common
words in their glosses. For each common phrase in the glosses of two concepts
containing n words, the Extended Lesk measure assigns a score of n2. The to-
tal similarity score is the sum of those scores. In addition, Extended Lesk looks
for overlap between all glosses of the senses that have a relation (e.g. hypernym,
hyponym) with the concepts.

Let R be the set of possible WordNet relations between two concepts. The
Extended Lesk overlap measure is defined as:

simeLesk(c1, c2) =
∑
r,q∈R

overlap(gloss(r(c1)), gloss(q(c2))) (2.1)

Where c1, c2 are two concepts, r, q are two WordNet relations and gloss(r(c))
is the concatenation of all the senses of c with relation r.

4http://search.cpan.org/dist/WordNet-Similarity/lib/WordNet/
Similarity.pm
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Graph-based Method

This method considers WordNet as a graph G = (V,E) in which each node rep-
resent a concept (synset) or a dictionary word. Each undirected edge represents
a relation between synsets and each directed edge represents a link from a dic-
tionary word to a synset. (Hughes and Ramage 2007) presented a random walk
algorithm over WordNet, with good results on a similarity dataset. (Agirre et al.
2009) improved these results and provided the best results among WordNet-based
algorithms on the Wordsim353 dataset.

The method includes two steps. Firstly, it computes a variant of the original
PageRank (Lawrence Page et al. 1999) called personalised PageRank (T. H. Haveli-
wala 2002) over WordNet for each word in order to produce a probability distri-
bution over WordNet synsets. Then, it computes the similarity of those words by
using the cosine between two vectors created from the probability distributions.

In the first step, G is considered as a graph with N vertices v1, ..., vN and di be
the out-degree of node i; let M be a N × N transition probability matrix, where
Mji = 1

di
if a link from i to j exists, and zero otherwise. Then, the calculation of

the PageRank vector Pr over G is equivalent to resolving the following equation:

Pr = cMPr + (1− c)v (2.2)

In the equation, v is aN×N vector whose elements are 1
N

and c is the so called
damping factor, a scalar value between 0 and 1. The first term of the sum on the
equation models the voting scheme described in the beginning of the section. The
second term represents, loosely speaking, the probability of a surfer randomly
jumping to any node, e.g. without following any paths on the graph. The damping
factor, usually set in the [0.85..0.95] range, models the way in which these two
terms are combined at each step.

In the second step, once personalized PageRank is computed, it returns a prob-
ability distribution over WordNet synsets. The similarity between two words can
thus be implemented as the similarity between the probability distributions. Alter-
natively, we can interpret the probability distribution for a word w as a vector −→w
of weights wi where each dimension i is a synset, and use the cosine to compute
similarity, as in the following equation:

sim(−→w ,−→v ) = cos (−→w ,−→v ) =
−→w · −→v
‖−→w ‖ ‖−→v ‖

(2.3)
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This method is implemented in the UKB5 package, a collection of programs
for performing graph-based Word Sense Disambiguation and lexical similarity/re-
latedness using a pre-existing knowledge base (Agirre et al. 2009, 2010. UKB has
been developed by the IXA6 group in the University of the Basque Country.

2.3.3 Wikipedia-based methods
Lately, a new approach has entered into the scene: building wide coverage
knowledge bases from encyclopedias developed by Web2.0 communities, such
as Wikipedia7. Wikipedia is a multilingual, Web-based encyclopedia written col-
laboratively by volunteers which is available for free. This section describes some
methods based on Wikipedia that allows us to calculate the similarity between
concepts:

• WikiRelate!8: This system developed by (Strube and Ponzetto 2006) is
based on methods for WordNet (Hirst and St-Onge 1998; Jiang and Con-
rath 1997; Leacock and Chodorow 1998; Lin 1997; Patwardhan et al. 2003;
Resnik 1995) and redesigned to work with the Wikipedia. WikiRelate! re-
trieves all pages from Wikipedia containing the two words for which we
want to compute the similarity, and then computes the text overlaps in the
content of the articles.

• Wikipedia Link Vector Model: This technique is based in the structure of
the links an the titles of the Wikipedia articles. The system computes the
similarity computing the angle between the vectors of links, weighting them
with the probability of each link. This method is explained with more detail
in Section 6.2.3.

• WikiWalk9: WikiWalk (Yeh et al. 2009) is a method that uses random walk
algorithms on a graph to measure semantic similarity between words. The
graph is created by representing each article as a node and each link between
articles as an edge. Given two words, WikiWalk uses the Explicit Semantic
Analysis (Gabrilovich and Markovitch 2007) to find their corresponding
nodes in the Wikipedia graph. After the words are linked to specific nodes,

5http://ixa2.si.ehu.es/ukb
6http://ixa.si.ehu.es/Ixa
7http://www.wikipedia.org
8http://www.eml-research.de/nlp
9http://wiki-walk-ios.soft112.com/
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semantic similarity is computed by applying personalised Pagerank for each
word to create a probability distribution of related nodes. The final score is
given by the cosine of the angle between the vectors of their probability
distributions.

2.4 Corpus-based word similarity
Large corpora has been also used as a source data for semantic similarity. The
possibility of applying descriptive approaches (those which derive the necessary
knowledge from a natural source of data without any pre-existing frame) using
statistical techniques, having information of the frequency of use, etc. is crucial
for extracting important information related to linguistic phenomena. Thus, un-
structured lexical resources such as monolingual and bilingual corpora provide an
additional though less organized source for semantic similarity.

2.4.1 Distributional Semantics
Distributional Semantics Modelling (DSM) is an active area of research within
the field of natural language processing. In distributional semantics, the meaning
of words is explored by looking at their distribution in texts (You shall know a
word by the company it keeps! (Firth 1957)). The combined contexts of words,
represented as feature vectors in a high-dimensional vector space, are indicative
of their meanings. These models are named Vector Space Models.

Weighted word co-occurrence matrices

In VSM the meaning of a content word is represented in terms of a distributed
vector, recording its pattern of co-occurrences (sometimes, using specific syntac-
tic relations) with respect other content words within a corpus. Different semantic
similarity measures and linguistic phenomena may then be modelled in terms of
linear algebra operations (such as cosine) on distributional vectors.

Since distributional semantic models represent words according to their occur-
rence contexts, they may be used to model word similarity or word association.
Two words are similar/related if they co-occur in similar contexts. This idea can
be straightforwardly used to acquire pairs (or sets) of related words. We can en-
code how often a word occurs in a document or in conjunction with another word.
Matrices encoding the former are word-document matrices, and matrices encod-
ing the latter are word-word co-occurrence matrices. A word-document matrix
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is a |D| × |V | matrix, where D is the collection of documents and V is the the vo-
cabulary. In these matrices two documents are similar if their vectors are similar,
and two words are similar if their vectors are similar. To generate word-word ma-
trices windows of certain numbers of words or full paragraphs are used instead of
documents. Small windows of 1-3 words encode a more syntactic representation,
while longer windows of 4 or more words encode a more semantic representation.
These matrices are |V | × |V | where V is the vocabulary, and words are similar if
their vectors are similar (they usually co-occur with the same words: context).

Typically word-word matrices are very sparse as the majority of words do
not appear in conjunction with other words. But there are other word that are
very frequent but do not provide much information, such as ’the’, ’a’, ’from’ or
’to’. It in crucial to have a measure of how important or informative is a word.
Many studies have used different statistic techniques to measure the significance
of terms with respect a corpus text. In Information Retrieval (Baeza-Yates and
Ribeiro-Neto 1999; Kageura and Umino 1996; Manning and Schütze 1999) dif-
ferent term-weight measures are used to represent the usefulness of terms in the
retrieval process; for example, frequency (Luhn 1957), signal-to-noise ratio (Den-
nis 1964; Salton and McGill 1986), Pointwise Mutual Information (PMI) (Church
and Hanks 1990), IDF (Jones 1972), relevance weighting methods (Robertson
and Jones 1976), and TF–IDF and its variations (Salton and Buckley 1988). Us-
ing these measures it is possible to weight word-word co-occurrence matrices to
reflect the most salient characteristics.

The final step is to use the co-occurrence matrices to measure the similarity
between two words. Most methods to measure the semantic similarity of pairs
of words are based on dot product, inner product or cosine similarity. Cosine
similarity solves the problem that happens when using dot product with words of
very different frequency (these vectors are longer). Dividing the dot product by
the length of the two vectors gives as result the cosine of the angle between both
vectors or cosine similarity:

cosθ =
−→w · −→v
‖−→w ‖ ‖−→v ‖

(2.4)

Other methods to compute the similarity of vectors are chi-square statistics
(Makoto et al. 1976), PMI (Church and Hanks 1990), Dice coefficient (Smadja
1993), log-likelihood ratio (Dunning 1993) and Jaccard similarity measure (Grefen-
stette 1994).
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Dimensionality reduction

Word co-occurrence matrices are usually very big. If the vocabulary comprises
50,000 words, matrix is going to be an enormous 50, 000 × 50, 000 matrix. Ma-
nipulating matrices of this size is computationally expensive. Dimensionality re-
duction aims to reduce the size of matrices by eliminating highly correlated rows
and columns, while maintaining most of the information.

Singular Value Decomposition (SVD) is a factorization of a matrix, where for
a matrix M of dimension m× n there exists the following factorization:

Mm×n = Um×nSn×nV
∗
n×m (2.5)

where U and V are orthonormal (V ∗ being the conjugate transpose of V , thus
also orthonormal) and S a diagonal matrix where S(1, 1) corresponds to the di-
mension with greatest variability, S(2, 2) to the second dimension with greatest
variability and so on, being S(n, n) the dimension with least variability.

Latent Semantic Analysis (LSA) (Deerwester et al. 1990; Landauer and Du-
mais 1997; Schütze 1998) is a technique to derive a k-dimensional matrix that is
an approximation of the original matrix M . LSA ensures the least information
loss for any given value for k, being a least-squares approximation to the origi-
nal matrix. In the last two decades LSA have proven to be useful in several NLP
tasks. Amongst many others, it have been applied to solve the TOEFL synonym
test (Landauer and Dumais 1997; Rapp 2004), automatic thesaurus construction
(Schütze 1998), identification of translation equivalents (Rapp 1999), word sense
induction and discrimination (Schütze 1998), Part-of-Speech induction (Schütze
1995), identification of analogical relations (Turney 2006), PP attachment disam-
biguation (Pantel and Lin 2000), and semantic classification (Versley 2008).

Latent Dirichlet Allocation (LDA) (Blei et al. 2003) is another statistical
method that learns a set of latent variables, called topics, describing the contents
of a document collection. Given a topic model, documents can be viewed as a
set of probability distributions over topics, θ. The distribution for an individual
document i is denoted as θi. The similarity between a pair of texts is estimated
by comparing their topic distributions (Aletras et al. 2012; Aletras and Stevenson
2012). This is achieved by considering each distribution as a vector (consisting
of the topics corresponding to an item and its probability) and then computing the
cosine of the angle between them. LDA can be used as a dimensionality reduction
technique by deriving a probabilistic word× topic VSM.
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2.4.2 Distributed Representations and Neural Networks
Learning distributed representations is a topic very related to distributional se-
mantics that has attracted a lot of attention lately. Distributed representations of
words are vectors that are able to characterize the meaning of that words automat-
ically. Each word corresponds to a vector in an N-dimensional space, where word
vectors with a similar meaning are close, and those with different meanings are
further away.

A language model is a function or algorithm that can be used to learn the
statistical characteristics involved in the distribution of certain sequences of words
in a naturally written text. Learning this statistic allows us to design a probabilistic
model capable of predicting which word comes after a certain sequence of other
words.

Figure 2.1 – Diagram of an artificial neuron. Each neuron is a simple logistic
regression y = f(Wx+b), where inputs xi are weighted by the synaptic weights
wi, summed up, and passed through the activation function f , which is usually a
sigmoid or tanh (b is a bias term).

Neural networks are computational architectures that seeks to mimic the func-
tioning of the human brain. As in the human organ, each (artificial) neuron (Fig-
ure 2.1) is connected to other neurons, forming a network (Figure 2.2). Given
an input that activates a certain number of neurons, the neural network returns
as output the activation of other neurons. Typical neural networks contain an
input layer, an output layer, and at least one hidden layer. Modern networks con-
tain from few thousand to a few million neurons, with millions of connections
between them. Training these networks has traditionally been very complicated
and not very fruitful. This began to change recently thanks to the arrival of Deep
Learning techniques, which allowed pre-training hidden layers of neural networks
(Hinton et al. 2006; Erhan et al. 2010). Deep Learning made it possible for neural
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Figure 2.2 – A diagram of a neural network with one hidden layer. Image from
’Supervised Sequence Labelling with Recurrent Neural Networks’, PhD disser-
tation by Alex Graves.

networks to address more complex problems with better results. Neural networks
are able to learn distributed representations iteratively, forming an N-dimensional
space where the words have been distributed according to their meaning.

A neural network language model (NNLM) is a language model based on
neural networks. (Bengio et al. 2003) presents a method that allows to learn dis-
tributed representations while at the same time uses those word vectors to predict
the probability with which those words occur in that context, reducing the curse
of dimensionality. (Collobert and Weston 2008) presented another similar solu-
tion for calculating these word vectors optimizing the network via gradient ascent.
The derivatives modify the word vectors in a L ∈ Rn×|V | matrix, where |V | is the
size of the vocabulary and n is the dimensionality. The word vectors inside this
matrix capture distributional syntactic and semantic information via the word’s
co-occurrence statistics. Once we have learned these word vectors (or embed-
dings) we can use them to calculate the similarity between words using the cosine
similarity between them.

2.4.3 Continuous Bag-of-Words and Skip-gram models
(Mikolov et al. 2013a) proposed two models for learning distributed representa-
tions of words, while minimizing the computational complexity.

The Continuous Bag-of-Words (CBOW) model is an architecture similar to a
NNLM, but the hidden layer is removed and the projection layer is shared for all
words. In this model the order does not affect the projection. In fact, they use
a window of four previous words and four following words, where the training
objective is to correctly classify the current word. In other words, the model
predicts the current word based on its context. The CBOW model architecture is
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Figure 2.3 – On the left, CBOW architecture that predicts the current word based
on the context. On the right, Skip-gram architecture that predicts surrounding
words based on the current word. Images extracted from Mikolov et al. 2013a.

shown in Figure 2.3.

The Skip-gram model is similar to CBOW, but it predicts the context of a
given word, instead of predicting the current word based on the context. Using a
hierarchical softmax function they predict (a window of) words before and after
the current word. Increasing this windows improved the resulting word vectors,
but also the computational complexity of the model. Following the assumption
that distant words are usually less relevant to the current word they lowered the
weight of distant word by sampling less of those words. The Skip-gram model
architecture is shown in Figure 2.3, on the right side.

Word representations obtained using the Skip-gram model were improved in
(Mikolov et al. 2013b) by subsampling words that occur frequently such as ’in’,
’the’ or ’a’. They also described a simple alternative to the hierarchical softmax
called negative sampling. Additionally, they present a technique to learn phrase
representations by substituting words that appear frequently together in the corpus
by tokens (e.g. they substitute ’New York’ by ’New_York’).
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2.5 Combining Knowledge-based and Corpus-based
similarity

In general, there are three methods to combine Knowledge-based and Corpus-
based similarity. In this section we briefly describe these methods.

The first method is to use resources to complement others. Although the
vocabulary of WordNet is very extensive, sometimes we are in the case that a give
a word is not included in WordNet (or other dictionary). In these cases it is possi-
ble to use other resources to complete the missing information. For instance, it is
possible to search in corpora, using distributional semantics, words with similar
meanings to those words that are not in our dictionary, in order to discover others
who are. Once synonyms or words with similar meanings of the target word are
detected it is possible to find some of them in our dictionary. (Agirre et al. 2009)
explored this approach, improving their results.

The second method, and probably the most used one, is to combine knowledge-
based and corpus-based similarity using Machine Learning (ML) approaches. In
this approach similarity scores and other features are computed separately using
knowledge and corpus-based techniques. These features and scores are used to
feed any machine learning algorithms, such as Linear Regressors, Decision trees
or Support Vector Regressors.

The third method proposes to encode word vectors using the structure stored
in knowledge bases (e.g. WordNet or Wikipedia) (Goikoetxea et al. 2015). In this
model, the meaning of a word is encoded using random walks over the knowledge
base, where each random walk generates an artificial context for a given word.
Then, this artificial context is used to feed a NNLM which is able to learn word
vectors. These word vectors differ from the previous two because they encode the
meaning based on a structured knowledge base, made by human experts, instead
using unlabeled corpora. Wordnet based word vectors10 provide more precise
knowledge, but less coverage.

Recently, (Rychalska et al. 2016) used knowledge from WordNet to improve
their word representations, with moderate success (see Section 2.8.5). However,
the most common solution to combine Knowledge-based and Corpus-based sim-
ilarity is to use ML. In this approach the similarities are computed independently
using both techniques, then combined using mathematical models able to search
patterns and learn a function that can improve results.

10http://ixa2.si.ehu.es/ukb/
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2.6 From Word Similarity to Textual Similarity
All methods presented in Sections 2.3 and 2.4 are constructed/designed to com-
pute the similarity between a pair of words. Now, consider that we want to mea-
sure the similarity between these two sentences:

• The man is smashing garlic.

• A man is smashing some garlic.

Without using any of the methods presented in this chapter we can align words
from one sentence to the other: man-man, is-is, mashing-smashing, and garlic-
garlic. Using a simple word overlap metric we can compute a similarity score
for these sentences S1 and S2:

sim(S1, S2) =
2 ∗ |Aligned|
|S1|+ |S2|

(2.6)

where Aligned = {man − man, is − is, smashing − smashing, garlic −
garlic} is a set of aligned words between S1 and S2. Following this metric the
similarity is 0.8 out of a maximum score of 1, and if stop-words are removed the
similarity increases up to 0,86. However, word overlap and other similar mea-
sures, like n-grams comparison, fail when evaluating sentences with different but
similar words, such as the following two:

• The woman is applying cosmetics to her face.

• A girl is putting makeup on her face.

Although aligning words from one sentence to another is not very difficult for
humans, it is not trivial for computers. Below, we describe two techniques to com-
pute the similarity between sentences using the methods and resources previously
presented in this chapter.

Sentence Similarity by Pairwise Word Similarity

(Mihalcea et al. 2006) presented a method for measuring the semantic similarity
of texts as a function of the semantic similarity of the components words. They
did this by combining metrics of word-to-word similarity (similarity scores for a
given word pair) and word specificity (IDF scores for the words, see below) in a
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formula capable to assign a good semantic similarity score for to input sentences
S1 and S2:

sim(S1, S2) =
1

2
(

∑
wi∈S1

(idf(wi) ∗ max
wj∈S2

Sim(wi, wj))∑
wi∈S1

idf(wi)
+

∑
wj∈S2

(idf(wj) ∗ max
wi∈S1

Sim(wj , wi))∑
wj∈S2

idf(wj)
) (2.7)

where Inverse Document Frequency (IDF) is an inverse function of the number
of documents in which that term occurs that can be used to quantify the specificity
of a term/word. Taking into account the specificity of words allows to this formula
assigning higher weight to a semantic matching identified between two specific
words (e.g collie and sheepdog), and give less importance to the similarity mea-
sured between generic concepts (e.g get and become). It is possible to substitute
the IDF for any other word specificity metric, and sim(wi, wj) can be any metric
to measure the similarity between two words.

The formula aligns each word wi from sentence S1 to the word wj in sentence
S2 with the highest semantic similarity (and vice versa). In this process only words
with the same part-of-speech (PoS) are considered. In other words, when aligning
a noun all words with other PoS are ignored (for instance, it cannot be aligned to
a verb). Furthermore, if two words are identical in both sentences, their similarity
is going to be 1.

Autoencoders

Architectures shown in Section 2.4.1 are very useful for representing words,
but they are not capable of representing more complex constructions, such as
phrases or sentences. Recursive Autoencoders (RAE) (Pollack 1990; Socher
et al. 2010, 2011b) architectures allow to learn semantic vector representations
of phrases or sentences. First, sentences are parsed to generate dependency trees.
Then, RAE uses the word vectors of word in leaves to recursively compute the
representations of intermediate nodes (or subtrees), obtaining a final vector that
characterizes the meaning of the full phrase (or sentence). Figure 2.4 shows an
example of how a RAE encodes the distributed representation of a sentences.

Once these sentence representations are generated it is possible to compute
the similarity between sentences in the same way as with word representations,
by using the cosine similarity of vectors.
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Figure 2.4 – Example of a RAE encoding the distributional representation of a
full sentence, extracted from (Socher et al. 2011a). Vectors 1-4 are the distribu-
tional representations for the words The, cats, catch and mice, respectively. A
RAE is first applied for each intermediate node in the dependency tree, comput-
ing phrase representations for The cats (vector 6) and catch mice (vector 5), and
then to vectors 5 and 6 to compute the representation of the full sentence, The
cats catch mice (vector 7).

2.7 Evaluation
To evaluate systems for semantic similarity it is necessary to have datasets anno-
tated with appropriate values for each pair of words or sentences. Typically, these
datasets are created using annotations assigned by humans. Datasets for semantic
similarity were scarce when this thesis was proposed. However, there were at least
two datasets for word similarity, and other two for longer snippets of text. In this
section we present those datasets for semantic similarity.

The first one, RG dataset, consists of 65 pairs of words collected by (Ruben-
stein and Goodenough 1965), who had them judged by 51 human subjects in a
scale from 0.0 to 4.0 according to their similarity, but ignoring any other possi-
ble semantic relationships that might appear between the terms. This dataset is a
consequence of a study about the relationship between similarity of context and
similarity of meaning (synonymy). Rubenstein and Goodenough asked to humans
how the proportion of words common to context containing a word A and to the
contexts containing a word B was related to the degree to which A and B were
similar in meaning. These method assume that pairs of words which have many
contexts in common are semantically closely related. Using 65 pairs of words
(which range from highly synonymous pairs to semantically unrelated pairs) the
relation is shown between similarity of meaning The 65 word pairs consist of
ordinary English words.

The second dataset, WordSim-353 (Finkelstein et al. 2002) contains 353 word
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pairs, each associated with an average of 13 to 16 human judgements. In this
case, both similarity and relatedness are annotated without any distinction. Sev-
eral studies indicate that the human scores consistently have very high correla-
tions with each other (Miller et al. 1991; Resnik 1995), thus validating the use
of these datasets for evaluating semantic similarity. The dataset contains two sets
of English word pairs along with human-assigned similarity judgements. The
collection can be used to train and/or test computer algorithms implementing se-
mantic similarity measures. The first set (set1) contains 153 word pairs along with
their similarity scores assigned by 13 subjects. The second set (set2) contains 200
word pairs, with their similarity assessed by 16 subjects. Subjects’ names have
been replaced by ordinal numbers (1..13, or 1..16) to protect their privacy; identi-
cal numbers in the two sets do not necessarily correspond to the same individual.
Each set provides the raw scores assigned by each subject, as well as the mean
score for each word pair. For convenience, there is a combined set (combined)
that contains a list of all 353 words, along with their mean similarity scores. The
combined set is merely a concatenation of the two smaller sets. (Agirre et al.
2009) also proposed to split the WordSimilarity-353 collection into two datasets,
one focused on measuring similarity, and the other one on relatedness.

These two datasets are word similarity datasets, and they are not important
for this research. Regarding text similarity, there were two similarity datasets, (Li
et al. 2006) and (Lee et al. 2005). These datasets include dictionary definitions
and news documents, respectively. Thus, they are datasets for similarity above
word level: sentence similarity and document similarity.

The Li dataset includes 65 sentence pairs, which correspond to the dictionary
definitions for the 65 word pairs in the RG dataset. Where more than one sense of
a word was given in the dictionary, the first noun sense in the list was chosen. The
authors asked human informants to assess the meaning of the sentence pairs on a
scale from 0.0 (minimum similarity) to 4.0 (maximum similarity). Each sentence
pair was presented on a separate sheet, and the order of presentation of the sen-
tence pairs was randomized to avoid biases due to the order of presentation. They
assigned a semantic similarity score calculated as the mean of all annotations to
each of the 65 sentence pairs. The distribution of scores was very skewed towards
low similarity values. While the dataset is very relevant to semantic sentence sim-
ilarity, it is too small to train, develop and test typical machine learning based
systems.

The Lee dataset comprises 50 documents from the Australian Broadcasting
Corporation’s news mail service, ranging in length from 51 to 126 words, cover-
ing various topics. Subjects were asked to judge the similarity of document pairs
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on a five-point scale (with 1.0 indicating ’highly unrelated’ and 5.0 indicating
’highly related’). Each possible pair of documents (excluding self-comparisons)
was presented between eight and twelve times, in a random order, and which doc-
uments were shown on the left and which ones on the right was also randomly
determined. As in the previous dataset, the distribution of scores was heavily
skewed towards low similarity values. The semantic similarity score was calcu-
lated as the mean of all annotations for each document pair, ant then normalized
to a 0-1 scale. This second dataset comprises a larger number of document pairs,
but it goes beyond sentence similarity into document similarity.

Currently there are other datasets related with textual similarity, out of the
scope of this thesis, but based on the datasets created, annotated and presented in
this thesis. Although they did not exist when this research began they are listed
here for completeness. Sentences Involving Compositional Knowledge (SICK)
consists of about 10,000 English sentence pairs annotated for relatedness in mean-
ing and entailment (Bentivogli et al. 2016). It is derived from caption of images
from 8K ImageFlickr (Hodosh et al. 2013) dataset and from our MSRvideo dataset
from 2012 (see Section 3.3.1). The sentences have been simplified to make them
easier to process by compositional model, and some of these sentences were mod-
ified and transformed to create variants. Paraphrase and Semantic Similarity In
Twitter (PIT-2015) is a dataset constructed crawling Twitter’s trending topics and
their associated tweets (Xu et al. 2015). It contains 17,790 sentence pairs for train-
ing set, 972 sentence pairs for development set, and 972 sentence pairs for testing
set, all of them annotated for paraphrase and semantic similarity. Scores for se-
mantic similarity were annotated following the procedure introduced in Chapter
3).

Although Textual Entailment (TE) is not directly textual similarity, it is a re-
lated task. The Stanford Natural Language Inference (SNLI) corpus is a collection
of 570k human-written English sentence pairs manually labelled for TE (Bowman
et al. 2015). Sentence pairs are labelled with entailment, contradiction, and neu-
tral, and they serve for evaluation and also to develop NLP systems.

2.8 Best systems for Semantic Textual Similarity
In this section we describe the best and more important systems for Semantic
Textual Similarity (STS) task, which is going to be introduced in the next chapter.
These systems make use of the methods presented in Sections 2.3, 2.4, 2.5 and 2.6
to compute the similarity between two sentences. They are presented in chrono-
logical order, and they were the best system in the year they were presented in
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at least one of the datasets. These systems are referenced later, comparing them
with the system presented in Chapter 4.

2.8.1 DKPro

DKPro (Bar et al. 2012) is the system which ranked first in the 2012 edition of
the STS task. It uses a simple log-linear regression model, trained on the training
data, to combine multiple text similarity measures of varying complexity. They
generate simple string-based features, but also more complex Semantic Similarity
measures. The final models uses 20 features to feed this linear regressor, out of
the possible 300+ features implemented, and they train a different regressor for
each of the datasets.

The String-based features include the Longest Common Substring (Gusfield,
1997), the Longest Common Subsequence (Allison and Dix, 1986) and Greedy
String Tiling (Wise, 1996). In addition to the previous features they also incorpo-
rate n-grams comparison using the (Barrón-Cedeño et al., 2010) implementation
and the Jaccard coefficient following (Lyon et al., 2001), and the containment
measure (Broder, 1997).

As Semantic Similarity measures, it uses graph-based representation of words
and the semantic relations between them, running the algorithms from (Jiang and
Conrath, 1997), (Lin, 1998b) and (Resnik, 1995) on WordNet (Fellbaum, 1998).
To scale the pairwise word similarity to the sentences level they used the aggrega-
tion method presented in (Mihalcea et al. 2006). They also used Explicit Seman-
tic Analysis (ESA) (Gabrilovich and Markovitch, 2007) on WordNet, Wikipedia
and Wiktionary11. Similarity scores from a Distributional Thesaurus (Lin 1998a),
computed on 10M dependency-parsed sentences of English newswire as a source
for pairwise word similarity, were also used to feed the linear regressor, but only
a feature based on cardinal number was selected.

Text expansion methods such as a Lexical Substitution System (Biemann,
2013) based on supervised word sense disambiguation, and the Moses SMT system
(Koehn et al., 2007 for statistical machine translation were also used.

Additional measures related to structure and style were generated, including
computing stopword n-grams (Stamatatos, 2011), part-of-speech n-grams, word-

11Wiktionary (https://www.wiktionary.org/) is a multilingual, web-based project
to create a free content dictionary of all words in all languages. The main goal of Wiktionary is to
provide an instrument to help in the understanding of the words, and not only their definitions. It
contains synonyms, antonyms, translations to other languages, etymologies and more. The content
of Wiktionary can be used in the same way as Wikipedia.
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pair order and word-pair distance (Hatzivassiloglou et al., 1999), a function for
word frequencies (Dinu and Popescu, 2009), and statistical properties such as
type-token ratio (TTR) (Templin, 1957) and sequential TTR (McCarthy and Jarvis,
2010).

2.8.2 Takelab
TakeLab (Šarić et al. 2012) is the system which ranked second in the 2012 edition
of the STS task. However is was the best system on two of the datasets, MSRpar
and MSRvid. The system uses a Support Vector Regression (SVR) model trained
on multiple features from word and semantic similarity measures.

Word similarity measures include both knowledge-base and corpus-based
approaches. The former measures are based on WordNet: lowest common sub-
sumer (LCS), PathLen similarity (Bird, 2006) computed using the NLTK library
(Leacock and Chodorow, 1998) and Lin similarity (Lin, 1998b). The latter mea-
sures are computed using LSA over the New York Times Annotated Corpus (NYT)
(Sandhaus 2008) and Wikipedia.

Semantic Similarity measures include n-gram overlap features and WordNet-
Augmented Word Overlap, a mechanism to assign partial scores to words that are
not common to both sentences, syntatic features such as Syntactic Roles simi-
larity (Oliva et al., 2011) and Syntactic Depenpendencies Overlap similar to the
proposal on (Robert and Paris, 2006), and additional features such as sentence
length differences, numbers overlap and named entity features.

2.8.3 Ebiquity-Core
Ebiquity-Core (Han et al. 2013) is the best system by mean correlation in the
2013 edition of STS task. It combines LSA word similarity and WordNet knowl-
edge, using an align-and-penalize approach and SVR models.

As Word similarity measure they performed LSA on the Web Corpus from
the Stanford WebBase project12. They employed SVD to improve their word to
word similarity scores. Then they used WordNet to increase the similarity between
two words if certain conditions were met, such as two words being in the same
WordNet synset or one word is the direct hypernym of the other. With this method
they were able to increase the similarity between words like doctor and hospital.

To assign a final STS score they used an align-and-penalize approach, which
was defined as follows:

12http://bit.ly/WebBase
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STS = T − P ′ − P ′′ (2.8)

where T is the term alignment score and P ′ is the penalty for bad alignments.
P ′′ is supposed to be a penalty for syntactic contradictions, but they did not im-
plement this penalty and the final submission for the task did not use this penalty.
An alignment was considered as bad if the score of that was lower than 0.05, or
if the terms were antonyms according to a collection of antonyms extracted from
WordNet (Mohammad et al. 2008).

The team submitted two other systems using a SVR models trained on 52 fea-
tures, but the results of these two systems were worse than the align-and-penalize
approach.

2.8.4 DLS@CU
DLS@CU (Sultan et al. 2014b, 2015) is the system that ranked first in the 2014
and 2015 edition of the STS task.

The system presented in 2014 makes use of a word aligner that aligns related
words based on if they are semantically similar or they occur in similar semantic
contexts. The proportion of aligned content words between both sentences can be
used to assign a similarity score.

This alignment process is applied in a four step pipeline, as shown in Figure
2.5. In the first step the system aligns word sequences that are identical in both
sentences and that contains at least one content word. In the second step they align
named entities using the Stanford Named Entity Recognizer (Finkel et al. 2005).
In the third step they align content words using a dependency-based contextual
similarity that defines the context of words using the syntactic dependencies. If
they can match the context of the words as equivalent, using the table presented
in (Sultan et al. 2014a), they align the words. In the last step they align content
words using a window of 3 words to the right and 3 words to the left. In their best
run, for the OnWN dataset, they used a stop-word list to improve results.

The final STS score is a function of the proportions of the aligned content
words in the two sentences. Once they compute the proportion of aligned content
word in both sentences, they use the harmonic mean of both proportion values
to calculate the final score. They submitted this system to the 2015 competition
with a minor change in the computation of the proportions of the aligned content
words. In the improved system a single proportion is computed, summing the
number of aligned content words in both sentences, and dividing it by the total
number of words in both sentences. They did other changes, like using the The
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Figure 2.5 – The alignment pipeline of the DLS@CU system.

Paraphrase Database (PPDB) (Ganitkevitch et al. 2013) to identify semantically
similar words (helping in the alignment process), or using the Levenshtein dis-
tance13 of 1 to detect misspellings. This improved system ranked 5th in 2015 by
mean correlation, 0.96 points below their new system.

The system that ranked 1st in 2015 is a combination of the previous system
(the improved system from 2014) and similarities from compositional word vec-
tors. Using 400-dimensional word vectors from (Baroni et al. 2014b) they con-
structed sentences vectors by combining the word vectors. To do so they com-
pute the centroid of the word vectors of the lemmas of the content words in the
sentence. Once they have the two sentence vectors they compute the similarity
between them using the cosine similarity. The combination of these two prelim-
inary STS scores is performed using a ridge regression model as implemented in
(Pedregosa et al. 2011).

2.8.5 Samsung-Ensemble
Samsung-Ensemble (Rychalska et al. 2016) is the best system by mean corre-
lation in the 2016 edition of STS task. It uses an ensemble classifier to perform
Linear Support Vector Regression (LSVR) (Drucker et al. 1997) over three other
classifier: a base word aligner (Sultan et al. 2015), a bi-directional Gated Recur-
rent Neural Network (GRNN) (Cho et al. 2014; Chung et al. 2014) and a third
classifier that is a combination of RAE and a WordNet based award-penalty sys-
tem using a Support Vector Machine (SVM).

The word aligner is the same used in the system that won the 2015 edition of
STS (Section 2.8.4), with two small variations to handle negations and antonyms.
If there is a negation in only one sentence, the score is reduced to 0. To detect
antonyms they use a list derived from WordNet, and if they found one, the score

13The Levenshtein distance between two words is the minimum number of single-character
edits (insertions, deletions or substitutions) required to change one word into the other.
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is also reduced to 0. This modified aligner is then used to feed a LSVR, altogether
with other features, to generate a corrected aligner.

The third classifier is a RAE for unsupervised training of sentence vectors
that uses a WordNet base approach to improve the performance. RAE uses parse
trees and the word vectors provided by (Pennington et al. 2014) to construct a
vector that can represent the meaning of the sentence. The module awards the
pairs of words with positive semantic similarity and penalizes the out-of-context
words and disjoint similar contexts. The WordNet based system also helps in this
process by adjusting the Euclidean distance of the word vectors of the leaves in
the dependency tree. For instance, if they have two leaves with the words ’woman’
and ’lady’, the word vectors A and B respectively, and a WordNet similarity ε they
refine one of the word vectors with the following formula:

Arefined = εA+ (1− ε)B (2.9)

These refined vectors are used to reconstruct the intermediate nodes of the
dependency tree, and the final sentence representation, using RAE. The subtrees
generated in this step are used to fill a distance matrix using the Euclidean dis-
tances, which are modified by the WordNet award-penalize strategy (this modifi-
cation is independent to the word vector refinement process we have seen above).
After adjusting this numbers to fall in the 0-5 range, the systems performs dy-
namic pooling as seen in (Socher et al. 2011a) to be able to compare sentences of
different lengths. These matrices, along with additional 12 features were used to
feed a SVM.

In order to compute the final STS they trained a LSVR using the two aligners,
the RAE with WordNet features, and the GRNN with the output neural network
described in (Tai et al. 2015).

2.9 Conclusions
This chapter has reviewed the state of the art in the area of semantic textual sim-
ilarity. The concepts of word similarity and relatedness have been defined, and
different methods that can be used to compute similarity have been presented.
We have also reviewed the datasets that were available for semantic similarity,
explaining how they were constructed. The best systems that make use of these
techniques and datasets have also been described.

As we have seen, datasets for semantic similarity used to be very small. This
makes them difficult to use for the majority of presented techniques, since most
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of them require large amounts of data to find the most salient characteristics.
In the next chapter we present a new task, Semantic Textual Similarity. This

task extends the semantic similarity presented in this chapter. In addition to the
definition of the task, in the next chapter we also present the datasets for STS, the
largest set of data for semantic similarity.
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3
Semantic Textual Similarity

This chapter describes the contributions made in the design and organization of
the Semantic Textual Similarity (STS) task. This work has involved designing the
task and supporting the creation of datasets for similarity tasks, as well as the
organization of the task itself. After the introductory section, in the Section 3.2
we detail and explain how the task was designed. Next, Section 3.3 presents he
various sources of the STS data and Section 3.4 presents the annotation procedure
used. Then, Section 3.5 investigates the evaluation of STS systems, analyses the
attraction of the task over the year, presents some of the best systems that partic-
ipated in the task and summarizes the tools and resources used by participants.
Finally, Section 3.6 draws some conclusions.

3.1 Introduction
STS aims to measure the degree of semantic equivalence between two sentences.
The objective was to define a task that could assign graded similarity values. This
graded similarity should intuitively capture the notion of intermediate shades of
similarity, such as pairs of text that differ only in minor nuanced aspects of mean-
ing, in relatively important differences, down to pairs that share only some details
or that only have in common being about the same topic. For example, consider
these two sentences:

• The woman is playing the violin.

• The young lady enjoys listening to the guitar.
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Undoubtedly, these two sentences are not equivalent, but it easy to note that
they are somehow similar. Both sentences are on the same topic, as they are
describing two actions (play/listen) related with musical instruments. Realizing
that ’violin’ is similar to ’guitar’ and that ’woman’ is also similar to ’young lady’
is an easy task for humans. Now, consider these two other sentences:

• In May 2010, the troops attempted to invade Kabul.

• The US army invaded Kabul on May 7th last year, 2010.

These two sentences are also similar, and it is not hard to assure that they are
more similar than the previous two. To do this we must look at why the sentences
of the two examples are different. In the first example, although they share the
same topic, they are different actions performed by different persons. However,
in the second example there are small details that make them differ. The first sen-
tence does not detail the nationality of the troops, although a person with knowl-
edge about the war of Afghanistan could easily establish this relation. Moreover,
the first sentence says that the troops ’attempted’ to invade Kabul, and in the sec-
ond it is implied that this invasion culminated with success. This distinction is
also simple to qualify for someone who is informed about this war. A person can
add what is missing in the sentences (relatively) easily, or ignore the differences
without changing too much the meaning (as in the case of the date). Therefore,
both sentences are similar but not equivalent, and it is not difficult to evaluate that
this pair of sentences is more similar than the first example.

3.2 Design of the STS task
STS aims to establish a unified framework for the evaluation and measurement
of the degree of semantic similarity between sentences. As we have seen, mea-
suring the degree of similarity is not straightforward. To make this task easier,
instructions were created to define each of these ranges. Six degrees of similarity
were designed, ranging from 0 (sentences are on different topics) to (sentences
are completely equivalent). In order to facilitate this task, we assigned example
sentences for each of the scores. The final instructions and examples for STS are
shown in Figure 3.1.

There are other tasks that are related to STS, and we have been inspired by
some of the tasks. In the next section we talk about these tasks, and their relation
and differences with STS.
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• (5) The two sentences are completely equivalent, as they mean the same
thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

• (4) The two sentences are mostly equivalent, but some unimportant details
differ.
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010.

• (3) The two sentences are roughly equivalent, but some important informa-
tion differs/missing.
John said he is considered a witness but not a suspect.
"He is not a suspect anymore." John said.

• (2) The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

• (1) The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

• (0) The two sentences are on different topics.
John went horse back riding at dawn with a whole group of friends.
Sunrise at dawn is a magnificent view to take in if you wake up early
enough for it.

Figure 3.1 – STS annotation scores with explanations and examples.

3.2.1 Related datasets and tasks

The first step in the designing process of the STS task was to consult similar
sources for inspiration. We decided to investigate if we can reuse collections of
existing datasets from tasks that are related to STS. In Section 2.7 we have seen
two datasets for semantic similarity, Li and Lee. Both datasets are interesting, but
the first is very small, including only dictionary definitions, and the second is a
dataset that deals exclusively with similarity between documents.

Textual Entailment (TE) (Dagan et al. 2010) and Paraphrase detection (PARA)
(Dolan and Brockett 2005) are two of the tasks that are most similar to STS. STS
differs from TE in as much as it assumes symmetric graded equivalence between
the pair of textual snippets. In the case of TE the equivalence is directional (e.g.
a car is a vehicle, but a vehicle is not necessarily a car). Additionally, STS differs
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from both TE and PARA in that, rather than being a binary yes/no decision (e.g.
a vehicle is not a car), STS wants to incorporate the notion of graded semantic
similarity (e.g. a vehicle and a car are more similar than a wave and a car).

However, since they also have certain similarities, we studied the pairs of text
from the RTE challenge (Dagan et al. 2006). The first editions of the challenge
included pairs of sentences as the followings:

T: The Christian Science Monitor named a US journalist kidnapped in Iraq
as freelancer Jill Carroll.

H: Jill Carroll was abducted in Iraq.

In TE there is a text (first sentence) and a hypothesis (second sentence), being
usually the hypothesis a shorter phrase than the text. Although these pairs of text
are interesting we decided to discard them from this task because the length of the
hypothesis was typically much shorter than the text, and we did not want to bias
the STS task in this respect.

In the next section we describe how we collected the sentences to create our
datasets for STS. Next, we describe the annotation process in Section 3.4.

3.3 Gathering datasets for STS
The main goal of this thesis is to design the Semantic Textual Similarity task, but
also to create and annotate datasets for it. To construct these datasets the first
step was to gather naturally occurring pairs of sentences with different degrees of
semantic equivalence. This was a challenge in itself as if we took pairs of sen-
tences at random, the vast majority of them would be totally unrelated, and only
a very small fragment would show some sort of semantic equivalence. When we
started the task in 2012 we observed that there was no comparable existing dataset
extensively annotated for pairwise semantic sentence similarity. We approached
the construction of the first STS datasets with the goal of gathering a substan-
tial amount of sentence pairs from diverse datasets. Moreover, we investigated
reusing a collection of existing datasets from tasks that are related to STS, as seen
in Section 3.2.1. Although we discarded the dataset from TE for the length differ-
ence between the text and the hypothesis, we found that the datasets from PARA
such as the Microsoft Research Paraphrase Corpus (MSRP) could be very useful.

Next we will describe each of these sources and detail how the sentences were
selected en each of the years. See Table 3.1 for the number of selected pairs per
dataset.
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Year Dataset Pairs Source
2012 MSRpar 1500 newswire
2012 MSRvid 1500 videos
2012 OnWN 750 glosses
2012 SMTeuroparl 1500 WMT eval.
2012 SMTnews 750 WMT eval.
2013 FNWN 189 glosses
2013 HDL 750 newswire
2013 OnWN 561 glosses
2013 SMT 750 MT eval.
2014 Deft-forum 450 forum posts
2014 Deft-news 300 news summary
2014 HDL 750 newswire headlines
2014 Images 750 image descriptions
2014 OnWN 750 glosses
2014 Tweet-news 750 tweet-news pairs
2015 Ans.-forum 375 Q&A forum answers
2015 Ans.-student 750 student answers
2015 Belief 375 committed belief
2015 HDL 750 newswire headlines
2015 Images 750 image descriptions
2016 Ans.-Ans. 254 Q&A forum answers
2016 HDL 249 newswire headlines
2016 Plagiarism 230 short-answer plag.
2016 Postediting 244 MT postedits
2016 Quest.-Quest. 209 Q&A forum questions

Table 3.1 – Summary of 2012, 2013, 2014, 2015 and 2016 datasets.

3.3.1 STS 2012 datasets
The first edition of STS was held in 2012 as part of the Semantic Evaluation
(SemEval) series of workshops (Agirre et al. 2012). For this competition we cre-
ated five different datasets, three of them as train data, with their respective test
data, and two additional ’surprise’ test sets without training data. The train data
was composed of pairs of Microsoft Research Paraphrase (MSRpar), MSR Video
Paraphrase Corpus (MSRvid) and Statistical Machine Translation from Europarl
(SMT-Europarl). The test data was composed with additional sentences from the
same sources and with the same number of pairs, and the two surprise dataset with
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sentences from Statistical Machine Translation from news (SMTnews), and pairs
of glosses (OnWN).

Microsoft Research (MSR) has pioneered the acquisition of paraphrases with
two manually annotated datasets. The first, called MSR Paraphrase (MSRpar
for short) has been widely used to evaluate text similarity algorithms. It contains
5801 pairs of sentences gleaned over a period of 18 months from thousands of
news sources on the web (Dolan et al. 2004). 67% of the pairs were tagged as
paraphrases. The inter annotator agreement is between 82% and 84%. Com-
plete meaning equivalence is not required, and the annotation guidelines allowed
for some relaxation. The pairs which were annotated as not being paraphrases
ranged from completely unrelated semantically, to partially overlapping, to those
that were almost-but-not-quite semantically equivalent. In this sense our graded
annotations enrich the dataset with more nuanced tags, as we will see in the fol-
lowing section. We followed the original split of 70% for training and 30% for
testing. A sample pair from the dataset follows:

• The Senate Select Committee on Intelligence is preparing a blistering report on
prewar intelligence on Iraq.

• American intelligence leading up to the war on Iraq will be criticized by a powerful
US Congressional committee due to report soon, officials said today.

In order to construct a dataset which would reflect a uniform distribution of
similarity ranges, we sampled the MSRpar dataset at certain ranks of string simi-
larity. We used the implementation readily accessible at CPAN1 of a well-known
metric (E. Ukkonen 1985). We sampled equal numbers of pairs from five bands
of similarity in the [0.4 .. 0.8] range separately from the paraphrase and non-
paraphrase pairs. We sampled 1500 pairs overall, which we split 50% for training
and 50% for testing.

The second dataset from MSR corpus is MSRvid. The authors showed brief
video segments to annotators from Amazon Mechanical Turk (AMT) and were
asked to provide a one-sentence description of the main action or event in the
video (David L. Chen and Dolan 2011). Nearly 120 thousand sentences were col-
lected for 2000 videos. The sentences can be taken to be roughly parallel descrip-
tions, and they included sentences for many languages. The sampling procedure
from this dataset is similar to that for MSRpar. We construct two bags of data
to draw samples. The first includes all possible pairs for the same video, and the

1http://search.cpan.org/~mlehmann/String-Similarity-1.04/
Similarity.pm
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second includes pairs taken from different videos. Figure 3.2 shows a video and
corresponding descriptions.

Figure 3.2 – Video and corresponding descriptions from MSRvid

Note that not all sentences from the same video were equivalent, as some de-
scriptions were contradictory or unrelated. Conversely, not all sentences coming
from different videos were necessarily unrelated, as many videos were on simi-
lar topics. We took an equal number of samples from each of these two sets, in
an attempt to provide a balanced dataset between equivalent and non-equivalent
pairs. The sampling was also done according to string similarity, but in four bands
in the [0.5 .. 0.8] range, as sentences from the same video had a usually higher
string similarity than those in the MSRpar dataset. We sampled 1500 pairs over-
all, which we split 50% for training and 50% for testing. A sample pair from the
dataset follows:

• The man is seasoning the sausages.

• The man added seasoning to water in a bowl.

To construct the SMT-Europarl dataset, given the strong connection between
STS systems and Machine Translation evaluation metrics, we sampled pairs of
segments that had been part of human evaluation exercises. Those pairs included
a reference translation and a automatic Machine Translation system submission,
as follows:
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• The only instance in which no tax is levied is when the supplier is in a non-EU
country and the recipient is in a Member State of the EU.

• The only case for which no tax is still perceived "is an example of supply in the
European Community from a third country.

We selected pairs from the translation shared task of the 2007 and 2008
ACL Workshops on Statistical Machine Translation (WMT) (Callison-Burch et al.
2007, 2008). For consistency, we only used French to English system submis-
sions. The training data includes all of the Europarl human ranked fr-en system
submissions from WMT 2007, with each machine translation being paired with
the correct reference translation. The test data is comprised of all Europarl hu-
man evaluated fr-en pairs from WMT 2008 that contain 16 white space delimited
tokens or less.

In addition, we created another dataset (SMTnews) comprising all the human
ranked fr-en system submissions from the WMT 2007 news conversation test set.
This dataset was used as test data, without train data. A sample pair from the
dataset follows:

• This gross error is leading Russia to political ruin.

• And this gross mistake is conducting Russia policy to his downfall.

The next set was radically different as it comprised pairs of glosses from
OntoNotes 4.0 (Hovy et al. 2006) and WordNet 3.1 (Christiane Fellbaum 1998)
senses (OnWN). The mapping of the senses of both resources comprised 110K
sense pairs. The similarity between the sense pairs was generated using simple
word overlap. 50% of the pairs were sampled from senses which were deemed
as equivalent senses, the rest from senses which did not map to one another. A
sample pair from the dataset follows:

• a short lyric or poem intended to be sung

• a narrative song with a recurrent refrain.

3.3.2 STS 2013 datasets
In the competition of 2013 (Agirre et al. 2013c) we did not provide training data,
but it was established that the datasets from the last year would be used as training.
This rule would apply for the subsequent editions of the competition, reusing
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the datasets from previous years as training. The new dataset released in 2013
comprises pairs from news headlines (HDL), MT evaluation sentences (SMT)
and pairs of glosses (OnWN and FNWN).

For HDL, we used naturally occurring news headlines gathered by the Eu-
rope Media Monitor (EMM) engine (Best et al. 2005) from several different news
sources. EMM clusters together related news. Our goal was to generate a balanced
dataset across the different similarity ranges, hence we built two sets of headline
pairs: (i) a set where the pairs come from the same EMM cluster, (ii) and another
set where the headlines come from a different EMM cluster, then we computed
the string similarity between those pairs in the same way we did with MSRpar
and MSRvid datasets. Accordingly, we sampled 375 headline pairs of headlines
that occur in the same EMM cluster, aiming for pairs equally distributed between
minimal and maximal similarity using simple string similarity. We sample another
375 pairs from the different EMM cluster in the same manner. A sample pair from
the dataset follows:

• Berri says ready to help launch national unity government

• The perception of Spain has changed dramatically with this government

The SMT dataset comprises pairs of sentences used in machine translation
evaluation. We have two different sets based on the evaluation metric used: an
HTER set, and a HYTER set. Both metrics use the TER metric (Snover et al.
2006) to measure the similarity of pairs. HTER typically relies on several (1-4)
reference translations. HYTER, on the other hand, leverages millions of transla-
tions. The HTER set comprises 150 pairs, where one sentence is machine trans-
lation output and the corresponding sentence is a human post-edited translation.
We sampled the data from the dataset used in the DARPA GALE project with an
HTER score ranging from 0 to 120. The HYTER set has 600 pairs from 3 subsets
(each subset contains 200 pairs): a. reference vs. machine translation. b. refer-
ence vs. Finite State Transducer (FST) generated translation (Dreyer and Marcu
2012). c. machine translation vs. FST generated translation. A sample pair from
the dataset follows:

• from calling for the revival of the coptic period to appealing for the reappearance
of the ( pharaonic ) era . i just hope that things don ’t get any worse.

• the calling to revitalize the coptic epoch is just as bad as the advocacy to revitalize
( the ancient egyptian ) epoch ...
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The OnWN/FnWN dataset contains gloss pairs from two sources: OntoNotes-
WordNet (OnWN) and FrameNet-WordNet (FnWN). These pairs are sampled
based on the string similarity ranging from 0.4 to 0.9. String similarity is used
to measure the similarity between a pair of glosses. The OnWN subset com-
prises 561 gloss pairs from OntoNotes 4.0 (Hovy et al. 2006) and WordNet 3.0
(Christiane Fellbaum 1998). 370 out of the 561 pairs are sampled from the 110K
sense-mapped pairs as made available from the authors. The rest, 291 pairs, are
sampled from unmapped sense pairs with a string similarity ranging from 0.5 to
0.9. The FnWN subset has 189 manually mapped pairs of senses from FrameNet
1.5 (Baker et al. 1998) to WordNet 3.1. They are randomly selected from 426
mapped pairs. In combination, both datasets comprise 750 pairs of glosses. A
sample pair from OnWN follows:

• measure the depth of a body of water

• any large deep body of water.

And another sample from FnWN:

• a certain idiosyncrasy belongs to an entity distinguishing it from other entities.

• unique or specific to a person or thing or category;

3.3.3 STS 2014 datasets
The 2014 dataset (Agirre et al. 2014) comprises pairs of news headlines (HDL),
pairs of glosses (OnWN), image descriptions (Images), DEFT-related discussion
forums (Deft-forum) and news (Deft-news), and tweet comments and newswire
headline mappings (Tweets).

For HDL, we repeated the same proccess we used the previous year, but avoid-
ing the temporal overlap of the news. For OnWN, we used the sense definition
pairs of OntoNotes (Hovy et al. 2006) and WordNet (Fellbaum 1998). The differ-
ences from the previous task is that the two definition sentences in a pair belong to
different senses, and that we sampled the pairs based on a string similarity ranging
from 0.5 to 1 instead from 0.4 to 0.9.

Inspired by the MSRvid dataset we included a new dataset this yeer. The
Images dataset is a subset of the PASCAL VOC-2008 dataset (Rashtchian et al.
2010), which consists of 1,000 images with around 10 descriptions each. Just as
in MSRvid, the authors asked annotators to provide a one-sentence description of
the picture. It was sampled from string similarity values between 0.6 and 1. We
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organized two bins with 375 pairs each: one with pairs of descriptions from the
same image, and the other one with pairs of descriptions from different images. A
sample pair from the dataset follows:

• Two red buses parked up with gardens in front of them.

• Red buses are parked by a large white building beside a formal garden.

Deft-forum and Deft-news dataset are derived from DEFT data 2. Deft-forum
contains the forum post sentences, and Deft-news are news summaries. We se-
lected 450 pairs for Deft-forum and 300 pairs for Deft-news. They are sampled
evenly from string similarities falling in the interval 0.6 to 1. A sample pair from
Deft-forum follows:

• The whole earth combined produces enough food for billion people.

• Who does it now only produce enough for billion?

And another sample from Deft-news:

• safe bourada was sentenced to 15 years in prison.

• djamel badaoui was sentenced to five years.

The Tweets dataset contains tweet-news pairs selected from the corpus re-
leased in (Guo et al. 2013), where each pair contains a sentence that pertains to
the news title, while the other one represents a Twitter comment on that particular
news. They are evenly sampled from string similarity values between 0.5 and 1.
A sample pair from the dataset follows:

• Broken limbs, torn lives in northern #Mali #Africa #conflict #humanrights

• Broken limbs, torn lives in Mali

2LDC2013E19, LDC2012E54
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3.3.4 STS 2015 datasets
The 2015 dataset (Agirre et al. 2015a) comprises pairs of sentences from news
headlines (HDL), image descriptions (Images), answer pairs from a tutorial di-
alogue system (Answers-student), answer pairs from Q&A websites (Answers-
forum), and pairs from a committed belief dataset (Belief).

For HDL and Images we repeated the same process we used the previous
year, but again avoiding the temporal overlap of the news and discarding those
description pairs that had been already used, respectively. Accordingly, this year
we sampled 1000 headline pairs of headlines (instead of just 375, see explanation
in Section 3.4.1) that occur in the same EMM cluster, aiming for pairs equally
distributed between minimal and maximal similarity using simple string similarity
as a metric. We sampled another 1000 pairs from the different EMM cluster in
the same manner. Similarly, we organized two bins with 1000 image descriptions
pairs each: one with pairs of descriptions from the same image, and the other one
with pairs of descriptions from different images.

The source of the Answers-student pairs is the BEETLE corpus (Dzikovska
et al. 2010), which is a question-answer dataset collected and annotated during the
evaluation of the BEETLE II tutorial dialogue system. The BEETLE II system is
an intelligent tutoring engine that teaches students basic electricity and electron-
ics. The corpus was used in the student response analysis task of Semeval-2013.
Given a question, a known correct ’reference answer’ and the ’student answer’,
the goal of the task was to assess whether student answers were correct, contra-
dictory or incorrect (partially correct, irrelevant or not in the domain). For STS,
we selected pairs of answers made up of single sentences. We sampled 2000 pairs
using string similarity values between 0.6 and 1. A sample pair from the dataset
follows:

• the terminal is separated from the battery terminal

• the terminals are separated by a gap

The Answers-forums dataset consists of paired answers collected from the
Stack Exchange question and answer websites3. Some of the paired answers are
responses to the same question, while others are responses to different questions.
Each answer in the pair consists of a statement composed of a single sentence or
sentence fragment. For multi-sentence answers, we extracted the single sentence
from the larger answer that appears to best summarize the answer. We sampled

3http://stackexchange.com/
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2000 pairs using string similarity values between 0.6 and 1. A sample pair from
the dataset follows:

• I don’t think there are likely to be any standards that address this issue specifically.

• You’re going to find answers all over the map for this one (i.e., there probably aren’t
"standards").

The Belief pairs were collected from the DEFT Committed Belief Annotation
dataset (LDC2014E55). All source documents are from English Discussion Fo-
rum. We sampled 2000 pairs using string similarity values between 0.5 and 1. It
is worth noting that the similarity values were skewed, with very few pairs above
0.8 similarity. A sample pair from the dataset follows:

• stick the cretins in with the people who have a high capacity for learning!

• this is how the people on the right here treat truth.

3.3.5 STS 2016 datasets
The 2016 dataset (Agirre et al. 2016a) comprises pairs of sentences from news
headlines (HDL), short answers to computer science questions (Plagiarism), post-
edited machine translated sentences (Postediting), and question-question/answer-
answer pairs from Stack Exchange Data Dump (Question-Question & Answer-
Answer). Again, the selection procedure for HDL was the same we used in 2015.
For the other datasets pairs are heuristically selected using a combination of lexi-
cal surface form and word embedding similarity between a candidate pair of text
snippets (see below).

The Plagiarism dataset is based on (Clough and Stevenson 2011)’s Corpus of
Plagiarised Short Answers. This corpus provides a collection of short answers to
computer science questions that exhibit varying degrees of plagiarism from related
Wikipedia articles. The short answers include text that was constructed by each
of the following four strategies:

1. Copying and pasting individual sentences from Wikipedia.

2. Light revision of material copied from Wikipedia.

3. Heavy revision of material from Wikipedia.

4. Non-plagiarised answers produced without even looking at Wikipedia.
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This corpus was segmented into individual sentences using CoreNLP (Man-
ning et al. 2014). A sample pair from the dataset follows:

• P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

• P(A), or the probability that the student is a girl regardless of any other information.

For Postediting we used the (Specia 2011) EAMT 2011 corpus, which pro-
vides machine translations of French news data using the Moses machine transla-
tion system (Koehn et al. 2007) paired with postedited corrections of those trans-
lations. The corrections were provided by human translators instructed to perform
the minimum number of changes necessary to produce a publishable translation.
STS pairs for this evaluation set are selected both using the surface form and em-
bedding space pairing heuristics and by including the existing explicit pairs of
each machine translation with its postedited correction. A sample pair from the
dataset follows:

• This is what we think is the most contributions from the point of view of customers.

• I believe that in the photograph the portrait is the kind of the most difficult.

The question-question and answer-answer evaluation sets are extracted from
the Stack Exchange Data Dump (Stack Exchange, Inc. 2016). The data include
long form Question-Answer pairs on a diverse set of topics ranging from highly
technical areas such as programming, physics and mathematics to more casual
topics like cooking and travel. Pairs are constructed using questions and answers
from the following less technical Stack Exchange sites: academia, cooking, cof-
fee, diy, english, fitness, health, history, lifehacks, linguistics, money, movies, mu-
sic, outdoors, parenting, pets, politics, productivity, sports, travel, workplace and
writers. Since both the questions and answers are long form, often being a para-
graph in length or longer, heuristics are used to select a one sentence summary of
each question and answer. For questions, we use the title of the question when
it ends in a question mark (questions with titles not ending in a ’?’ are dis-
carded). For answers, a one sentence summary of each question is constructed
using LexRank (Erkan and Radev 2004) as implemented by the Sumy4 package.
A sample pair from question-question follows:

• Should I drink water during my workout?

4https://pypi.python.org/pypi/sumy
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• How can I get my toddler to drink more water?

And another sample from answer-answer:

• If you are not sure how to do it, don’t do it at all.

• If they don’t, don’t force it.

Heuristics for pairs selection

These heuristics are used to find pairs sharing some minimal level of either sur-
face or embedding space similarity. An approximately equal number of candidate
sentence pairs are produced using our lexical surface form and word embedding
selection heuristics. Both heuristics make use of a Penn Treebank style tokeniza-
tion of the text provided by CoreNLP (Manning et al. 2014).

Surface Lexical Similarity is a surface form selection heuristic that uses an
information theoretic measure based on unigram overlap (Lin 1998b). As shown
in equation (3.1), surface level lexical similarity between two snippets s1 and s2
is computed as a log probability weighted sum of the words common to both
snippets divided by a log probability weighted sum of all the words in the two
snippets.

siml(s1, s1) =
2×

∑
w∈s1∩s2 logP (w)∑

w∈s1 logP (w) +
∑

w∈s2 logP (w)
(3.1)

Unigram probabilities are estimated over the evaluation set data sources and
are computed without any smoothing.

Word Embedding Similarity it the second heuristic, which computes the co-
sine between a simple embedding space representation of the two text snippets.
Equation (3.2) illustrates the construction of the snippet embedding space repre-
sentation, v(s), as the sum of the embeddings for the individual words, v(w), in
the snippet. The cosine similarity can then be computed as in equation (3.3).

v(s) =
∑
w∈s

v(w) (3.2)

simv(s1, s2) =
v(s1)v(s2)

||v(s1)||||v(s2)||
(3.3)

Three hundred dimensional word embeddings are obtained by running the
GloVe package (Pennington et al. 2014) with default parameters over all the data
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collected from the 2016 evaluation sources.5

3.4 Annotation
The next step after gathering the sentences for each dataset is to get quality as-
sessments. The process of annotating the datasets for STS has been changing over
the years, as we have been learning and gaining experience. Despite this, the pro-
cess is mostly the same each year, with small differences. The starting point is as
follows:

1. We have defined a straightforward Likert scale ranging from 5 to 0, and we
decided to provide definitions for each value in the scale (cf. Figure 3.1).

2. We have gathered sentences from several sources and created different datasets.

Annotating these datasets involves time and money, as it does when you want
to build any knowledge base. Therefore, before spending a considerable amount
of money in a large-scale annotation process (for the 2012 datasets) we did some
pilot annotations. We selected 200 pairs at random from the three main datasets
in the training set (MSRpar, MSRvid and SMT-Europarl). We personally did
these annotation, and the pairwise Pearson correlation ranged from 84% to 87%
among ourselves. The agreement of each annotator with the average scores of the
other was between 87% and 89%. This was preliminary evidence that the task
was well defined.

Given the good results of the pilot we decided to deploy the task in AMT in
order to crowd source the annotation task. As mentioned above, the annotation
process has evolved over the years, although these differences are small. The
biggest difference is that in 2013 we did not use AMT, but CrowdFlower, but this
was extraordinary, as we returned to AMT the following years. Annotators were
presented with the detailed instructions provided in Figure 3.1, and were asked to
label each STS sentence pair between 0 and 5, selecting from a dropdown box.
Five sentence pairs were presented to each annotator at once, per Human Intelli-
gence Task (HIT), at a payrate of $0.20. We collected five separate annotations

5The evaluation source data contained only 10,352,554 tokens. This is small relative to the
datasets used to train embedding space models that typically make use of > 1B tokens. However,
the resulting embeddings are found to be functionally useful for finding semantically similar text
snippets that differ in surface form.
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per sentence pair. The turkers were required to have achieved a 95% of approval
rating in their previous HITs, and had to pass a qualification task which included
6 example pairs. Annotators were restricted to people from the following coun-
tries: Australia, Canada, India, New Zealand, UK, and US. From 2014 onwards,
annotators were only eligible to work on the task if they had the Mechanical Turk
Master Qualification, a special qualification conferred by AMT (using a prior-
ity statistical model) to annotators who consistently maintain a very high level of
quality across a variety of tasks from numerous requesters. Access to these skilled
workers entails a 20% surcharge.

To monitor the annotations of the crowdsourcing workers, we created a rep-
resentative gold dataset of 105 pairs that were manually annotated by the task
organizers during STS 2013. We include one of these gold pairs in each set of
five sentence pairs, where the gold pairs are indistinguishable from the rest. Un-
like when we ran on CrowdFlower for STS 2013, these gold pairs are not used
for training purposes, nor are workers automatically banned from the task if they
make too many mistakes on annotating them. Rather, the gold pairs are only used
to help in identifying and removing the data associated with poorly performing an-
notators. With few exceptions, 90% of the answers from each individual annotator
fall within +/-1 of the answers selected by the organizers for the gold dataset.

In the next section we detail a post-hoc validation process performed to im-
prove the quality of the datasets.

3.4.1 Quality of annotation

In the previous section we have seen how we used Gold Standard (GS) pairs to
evaluate the annotations. These GS pairs were used to discard the annotations of
low quality workers. This quality control is done during the annotation process.
In addition to this pre-annotation quality control, we perform an additional post-
annotation quality control, which we describe in this section.

In order to assess the annotation quality, we measured the correlation of each
annotator with the average of the rest of the annotators. We can see this average
score of the rest of the annotators as a GS. If any annotator gets a very low corre-
lation score (below 0.5) in respect to this virtual GS we remove this annotator and
all his/her annotations. We then averaged all the other annotations to create the
final dataset. This method to estimate the quality is identical to the method used
for evaluation (see Section 3.5.1) and it can be thus used as the upper bound for
the systems. An example of this filtering is shown below:
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turkers with average of others:
GS:10014836.average SYS:10014836 N:5 Pearson: 0.969
GS:09100711.average SYS:09100711 N:5 Pearson: 0.935
GS:09843876.average SYS:09843876 N:5 Pearson: 0.966
GS:09872120.average SYS:09872120 N:5 Pearson: 0.910
GS:15460725.average SYS:15460725 N:5 Pearson: 0.475

In the example above each line represents an annotator. The first column is
the average score of the other annotators that evaluated the same pair, the second
column is the ID of the annotator, the third column is the total number of pairs
that annotator evaluated, and the last column is the correlation of the annotator in
respect to the virtual GS. Take into account that the four other annotators with we
computed the GS may be different for each of the five pair of sentences.

In another attempt to improve the quality of the data, in 2015 we used an
additional filtering process. We selected 2000 pairs (instead of 750) from each
dataset and annotated all of them. This ’raw’ data was automatically filtered in
order to achieve the following three (partially conflicting) goals:

1. Obtain a more uniform distribution across scores.

2. Select pairs with high inter-annotator agreement.

3. Select pairs which were difficult for a string-matching baseline.

This filtering process was purely automated and involved no manual selection
of pairs. The raw annotations and the Perl scripts that generated the final gold
standard are available at the task website.

The final number of selected pairs per dataset if shown in Table 3.1, and the
inter-tagger correlation for each dataset is shown in Table 3.2. The correlation
figures are generally very high (over 70%). The post-filtering process helps to
increase the inter-tagger correlation. The datasets with lower values are SMT-
Europarl, SMT-News, Deft-forum, and OnWN (2012). This happens in datasets
that are generally more difficult to understand, because they are not written in a
natural way. We have seen examples of each of the datasets in Section 3.3, but we
show again an example from OnWN (2012):

• seal, insulate or protect

• treat the body or any part of it by wrapping it, as with blankets or sheets, and
applying compresses to it, or stuffing it to provide cover, containment, or therapy,
or to absorb blood.
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Year Dataset Inter-tagger correlation

2012

MSRpar 71.2%
MSRvid 87.4%

OnWN 62.9%
SMT-Europarl 53.0%

SMT-News 56.4%

2013

FNWN 69.9%
HDL 85.0%

OnWN 87.2%
SMT 65.8%

2014

Deft-forum 58.6%
Deft-news 70.7%

HDL 79.4%
Images 83.6%
OnWN 67.2%

Tweets-news 74.4%

2015

Answer-forums 64.7%
Answer-students 76.6%

Belief 73.8%
Headlines 82.1%

Images 84.6%

2015
(Post-filtered)

Answer-forums 74.2%
Answer-students 82.2%

Belief 72.1%
Headlines 86.9%

Images 88.8%

Table 3.2 – Inter-tagger correlation scores for each of the datasets. The differ-
ence between the correlation of OnWN 2012 and 2013 datasets may be because
in 2013 CrowdFlower was used for the annotation process, rather than AMT.

And another example of unnaturally written sentences, from Deft-forum (2014):

• Jake with the assist.

• Voracek with the goal.

The distribution of scores is not the same among the different dataset. The
HDL dataset tends to be uniform, but the scores for SMT are not uniform, with
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most of the scores uniformly distributed between 3.5 and 5, a few pairs between
2 and 3.5, and nearly no pairs with values below 2. The source data for each of
the datasets has a big relevance in the distribution of the scores. For instance,
if we gathered sentences from a source with a fixed topic such as the Answers-
student we are going to obtain less values below 2 because all the sentences share
the topic. The datasets with the highest average scores are those derived from
SMT sources, with average scores between 4.55 and 4.19. On the other hand,
the datasets with the lowest average scores are the Answer-Forums, Belief and
FNWN, being their average score lower than 2. The datasets with the best distri-
bution are HDL13, HDL15, HDL16, Postediting, Answer-Answer, Plagiarism
and Images15, which average score is around 2.5.

The distribution of scores for different datasets is shown in Figure 3.3. Ad-
ditionally, the minimum, maximum, average and standard deviation values of all
the dataset are shown in Table 3.3.

3.5 System Evaluation
The objective of creating the datasets is to allow the participants to create systems
for STS and to evaluate them with respect to the systems of the other participants.
These systems should return a similarity score for any two sentences. Deciding
how to evaluate the output of these systems and ranking them was not easy.

In the next section we are going to explain the evaluation metrics we used for
STS, and how they evolved over the years. Next in Section 3.5.2 we present the
baseline systems used in the competitions. In Section 3.5.3 we briefly discuss
the participation the task attracted. Finally, in Section 3.5.4 we present the best
systems of each of the year and the tools and resources they employed in Section
3.5.5.

3.5.1 Evaluation metrics
In 2012, evaluation of STS was still an open issue. In order to have a single
Pearson measure for each system we concatenated the gold standards (and system
outputs) for all 5 datasets into a single gold standard file (and a single system
output). The first version of the results were published using this method, but the
overall score did not correspond well to the individual scores in the datasets, and
participants proposed two additional evaluation metrics, both of them based on
Pearson correlation. We decided that it was more informative, and on the benefit
of the community, to also adopt those evaluation metrics, and the idea of having a
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Year Dataset Min Max Avg Sdv

2012

MSRpar (Train) 0.25 5.00 3.32 0.93
MSRvid (Train) 0.00 5.00 2.14 1.60

SMT-Europarl (Train) 0.00 5.00 4.31 0.71
MSRpar (Test) 0.75 5.00 3.27 0.92
MSRvid (Test) 0.00 5.00 2.30 1.64

SMT-Europarl (Test) 1.50 5.00 4.55 0.52
SMT-News 0.25 5.00 4.33 0.82

OnWN12 0.00 5.00 3.87 1.02

2013

FnWN 0.00 4.00 1.47 0.99
HDL13 0.00 5.00 2.57 1.42

OnWN13 0.00 5.00 2.31 1.76
SMT 1.20 5.00 4.19 0.57

2014

Deft-forum 0.00 5.00 2.75 1.25
Deft-news 0.00 5.00 3.03 1.26

HDL14 0.00 5.00 2.77 1.40
Images14 0.00 5.00 2.67 1.50
OnWn14 0.00 5.00 2.64 1.93

Tweets-news 0.00 5.00 3.11 1.27

2015

Answer-forums 0.00 4.80 1.66 1.23
Answer-students 0.00 5.00 2.92 1.41

Belief 0.00 5.00 1.62 1.38
HDL15 0.00 5.00 2.56 1.62

Images15 0.00 5.00 2.50 1.65

2016

Answer-Answer 0.00 5.00 2.49 1.75
HDL16 0.00 5.00 2.47 1.71

Plagiarism 0.00 5.00 2.42 1.76
Postediting 0.00 5.00 2.51 1.73

Question-Question 0.00 5.00 2.13 1.50

Table 3.3 – Minimum, maximum, average and standard deviation values for each
dataset. Standard deviation values are quite low for SMT based datasets: SMT-
Europarl (Train), SMT-News, and SMT.

single main evaluation metric was dropped. This decision was not taken without
controversy, but the organizers gave more priority to openness and inclusiveness
and to the involvement of participants. The final result table thus included three
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(a) 2012 MSRpar (Train) (b) 2012 MSRvid (Train) (c) 2012 SMT-Europarl

(d) 2013 HDL (e) 2013 FNWN (f) 2013 ONWN

(g) 2014 Deft-forum (h) 2014 Images (i) 2014 Tweet-news

(j) 2015 Answer-forums (k) 2015 Belief (l) 2016 Plagiarism

Figure 3.3 – Average scores for each pair in datasets between 2012 and 2016. In the x
axe the pairs ordered according to mean score in increasing order. In the y axe the mean
score for each pair.

evaluation metrics.
The first evaluation metric was the Pearson correlation for the concatenation

of all five datasets, as described above. We used overall Pearson or simply ALL
to refer to this measure.

The second evaluation metric normalizes the output for each dataset sepa-
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rately, using the linear least squares method. We concatenated the system results
for five datasets and then computed a single Pearson correlation. Given Y = {yi}
and X = {xi} (the gold standard scores and the system scores, respectively), we
transform the system scores intoX ′ = {x′i} in order to minimize the squared error∑

i (yi − x′i)2. The linear transformation is given by x′i = xi ∗ β1 + β2, where β1
and β2 are found analytically. We refer to this measure as Normalized Pearson or
simply ALLnorm. This metric was suggested by one of the participants, Sergio
Jimenez.

The third evaluation metric was the weighted mean of the Pearson correlations
on individual datasets. The Pearson returned for each dataset is weighted accord-
ing to the number of sentence pairs in that dataset. Given ri the five Pearson scores
for each dataset, and ni the number of pairs in each dataset, the weighted mean is
given as

∑
i=1..5(ri ∗ni)/

∑
i=1..5 ni We refer to this measure as weighted mean of

Pearson or Mean for short.
From this year on, we used the weighted mean of the Pearson correlations

to aggregate the results from each dataset into an overall score. The analysis
performed in (Agirre and Amigó In prep.) shows that Pearson and averaging
across datasets are the best suited combination in general. In particular, Pearson is
more informative than Spearman, in that Spearman only takes the rank differences
into account, while Pearson does account for value differences as well.

3.5.2 The baseline system

The scores were produced using a simple word overlap baseline system named
TokenCos. The input sentences were tokenized splitting at white spaces, and then
represented each sentence as a vector in the multidimensional token space. Each
dimension had 1 if the token was present in the sentence, 0 otherwise. Similar-
ity of vectors was computed using cosine similarity. This baseline ranked 77/88,
73/89, 27/38, 61/74 and 100/113 in 2012, 2013, 2014, 2015 and 2016, respec-
tively. The drop in performance between the best system and the TokenCos base-
line in each of the years was the following: -0.24, -0.25, -0.25, -0.21 and -0.26.
The difference between the baseline and the best systems is quite stable overs the
different competitions. One explanation of this is that, despite the improvements
of the systems, the datasets are also more difficult each year.

In 2013 we also run two freely available systems, DKPro (Bar et al. 2012)
and TakeLab (Šarić et al. 2012) from STS 2012. They served as two strong
contenders since they ranked 1st (DKPro) and 2nd (TakeLab) in 2012 year’s STS
task. We trained the DKPro and TakeLab-sts12 models on all the training and test
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data from STS 2012 and evaluated them on the 2013 datasets. We additionally
trained another variant system of TakeLab, TakeLab-best, where we used targeted
training where the model yielded the best performance for each test subset as
follows: (1) HDL was trained on MSRpar 2012 data; (2) OnWN was trained
on all 2012 data; (3) FnWN was trained on 2012 OnWN data; (4) SMT was
trained on 2012 SMTeuroparl data. Note that Takelab-best is an upper bound, as
the best combination is selected on the test dataset. TokenCos, TakeLab-sts12,
TakeLab-best, DKPro would rank as 70th, 58th, 27th and 6th among 89 system
submissions, respectively. Takelab-best’s result was less than 10 points below the
best system, while Takelab-sts12’s result was more than 18 below. The different
results yielded from TakeLab depending on the training data suggests that some
STS systems are quite sensitive to the source of the sentence pairs, indicating
that domain adaptation techniques is important for this task. DKPro performed
extremely well when trained on all available training, only 5 points below the best
system, with no special tweaking for each dataset.

TakeLab was also used as a competitive baseline in 2014 and 2015, and was
trained with all datasets from previous years. TakeLab would rank 18th in 2014
and 42nd in 2015, ten absolute points below the best system in both cases, a bigger
difference than in 2013. This shows that systems are getting better.

3.5.3 Participation

To participate in the task teams are required to register in advance. Participants
should download the test sets, run their systems on it and upload the output of
their systems in text format. The first year the train datasets were released two
months before the test data, and from there on the datasets of previous years were
used as train. The test datasets are released on the previously announced date.

The evaluation windows is typically of 15 days, but after downloading the
test datasets they have a maximum of 120 hours to upload the results. Partici-
pants could send a maximum of three system runs. After the submission deadline
expired, the organizers published the gold standard in the task website, in order
to ensure a transparent evaluation process. The number of participants and the
number of systems runs sent each year are listed in the table 3.4.

The task has shown to attract great interest, always being the first or second
task of SemEval by number of participants. The decrease shown for 2014 was a
consequence of announcing the task later than usual.
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Year Teams Runs
2012 35 88
2013 34 89
2014 15 38
2015 29 74
2016 43 119

Table 3.4 – Participants in the STS task by year.

3.5.4 Results

This section describes the best STS systems that participated in the competition.
First of all, it is important to stress that the large majority of the systems are well
above the simple baseline. Table 3.5 shows the results for the baselines and for
the best three runs of each year. Each result is ordered by the rank of the system
according to the weighted mean of the Pearson correlations on individual datasets.
In addition, the Pearson score for each dataset is given.

The first thing that comes to mind from the results of Table 3.5 is that the mean
correlation of the systems has been rising steadily over the years up to the year
2016. It seems that the method for selecting more difficult pairs used that year
(see Section 3.3.5) works well. The difference between the best systems is very
small, in many cases not being statistically significant.

As for the individual datasets, the highest correlations are obtained for MSRvid
2012 (0.880), OnWN 2014 (0.8745), Images 2015 (0.864) and Postediting 2016
(0.848), and the lowest for SMT 2013 (0.327), SMT-news 2012 (0.399), Deft-
forums 2014 (0.471) and SMT-Europarl 2012 (0.477). Datasets with higher corre-
lations have in common the simplicity of their sentences, which are mostly quite
short. On the contrary, the datasets with lower correlations are usually datasets
with long cryptic sentences, that are hard to understand. In general, the correla-
tion for the non-MT datasets is really high.

Another aspect to keep in mind is that some systems are very dependent on
training data. For instance, the NTNU-run3 system (2014) obtains the highest cor-
relation in 4 datasets out of 6, but was ranked 3rd because it performed poorly on
the Tweet-news dataset: 9 points below the best system on overall, and more than
10 points below the best system on that dataset. However, this loss of performance
could also be explained by an incorrect/missing sentence pre-processing.
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Team and run MSRpar MSRvid
SMT-

eur
OnWN

12
SMT-
news

Mean

UKP-run2 0.683 0.874 0.528 0.664 0.494 0.677
TakeLab-simple 0.734 0.880 0.477 0.680 0.399 0.675
Soft-Cardinality 0.640 0.856 0.515 0.711 0.483 0.671

baseline 0.433 0.300 0.454 0.586 0.391 0.436

Team and run
HDL

13
OnWN

13
FNWN SMT Mean

UMBC-run1 0.764 0.753 0.582 0.380 0.618
UMBC-run2 0.743 0.705 0.544 0.371 0.593

Deft-base 0.653 0.843 0.508 0.327 0.580
DKpro 0.735 0.735 0.341 0.326 0.565

TakeLab-best 0.656 0.633 0.405 0.339 0.522
Takelab-sts12 0.486 0.633 0.269 0.279 0.434

baseline 0.540 0.283 0.215 0.286 0.364

Team and run
Deft-
forum

Deft-
news

HDL
14

Images
14

OnWN
14

Tweet-
news

Mean

DLS@CU-run2 0.483 0.766 0.765 0.821 0.859 0.764 0.761
Meerkat 0.471 0.763 0.760 0.801 0.875 0.779 0.761

NTNU-run3 0.531 0.781 0.784 0.834 0.850 0.676 0.755
TakeLab 0.333 0.716 0.720 0.742 0.793 0.650 0.678
baseline 0.353 0.596 0.510 0.513 0.406 0.654 0.507

Team and run
Ans-
forum

Ans-
stu.

Belief
HDL

15
Images

15
Mean

DLS@CU-S1 0.739 0.773 0.749 0.825 0.864 0.802
ExBThemis 0.695 0.778 0.748 0.825 0.853 0.794

DLS@CU-S2 0.724 0.757 0.722 0.825 0.863 0.792
baseline 0.445 0.665 0.652 0.531 0.604 0.587

Team and run
Ans.-
Ans.

HDL
16

Plag.
Post-
edit

Ques.-
Ques.

Mean

Samsung-EN1 0.692 0.827 0.841 0.835 0.687 0.778
UWB 0.621 0.819 0.824 0.821 0.702 0.757

Mayo-run3 0.614 0.773 0.805 0.848 0.747 0.756
baseline 0.411 0.541 0.696 0.826 0.038 0.513

Table 3.5 – Best three runs and baselines for each of the years.
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3.5.5 Tools and Resources
In addition to the system output, organizers asked participants to submit a de-
scription file, special emphasis on the tools and resources that they used. Given
the number of participants, it is really complicated to summarize all the tools
and resources used by the participants. In the first editions of the task, the to-
tals showed that WordNet was the most used resource, followed by monolingual
corpora and Wikipedia. Acronyms, dictionaries, multilingual corpora, stopword
lists and tables of paraphrases were also used. In the last years, aligning words
between sentences has been the most popular approach for the top participants.
They use WordNet (Christiane Fellbaum 1998), Word Embeddings (Mikolov et al.
2013a; Baroni et al. 2014a) and PPDB. In general, generic NLP tools such as
lemmatization, PoS tagging, distributional word embeddings, distributional and
knowledge-based similarity are widely used, and to a lesser extent, parsing, word
sense disambiguation, semantic role labelling and time and date resolution. Most
teams add a machine learning algorithm to learn the output scores, but some team
did not use it in their best run.

One observation we made is that all participants use the resources separately.
The most recurrent approach is to use the resources to obtain a STS score and then
use these values together with others to feed a Machine Learning (ML) system.
Most systems also add different characteristics extracted from the sentences to
enrich the ML system, but no one has worked in the combination of different
resources. Inspired by this, in the next chapter we present a novel system that
combines different resources to obtain a STS score.

3.6 Conclusions
Semantic Textual Similarity captures the notion that some texts are more simi-
lar than others, measuring their degree of semantic equivalence. Textual similar-
ity can range from complete unrelatedness to exact semantic equivalence, and a
graded similarity intuitively captures the notion of intermediate shades of simi-
larity, as pairs of text may differ from some minor nuanced aspects of meaning,
to relatively important semantic differences, to sharing only some details, or to
simply being related to the same topic.

This chapter presents the STS task from its conception to the present. The task
has been very constant over the years, the only changes being the origin of the
datasets. Throughout the chapter we have described how the task was designed,
its sources of inspiration, and the most similar tasks as TE and PARA.
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Recently, STS is also being used to evaluate semantic representations of sen-
tences. Several teams are competing aiming to generate the best sentence rep-
resentations or vectors, and they are using the datasets for STS to evaluate the
quality of their embeddings. (Wieting et al. 2015) generates sentence embed-
dings using neural networks, but also by simple averaging of the word vectors.
(Mu et al. 2017) follow the previous work on sentence embedding by averag-
ing, adding a post-processing step to improve the sentence representation. (Arora
et al. 2017) generates sentence representations averaging word vectors computed
on Wikipedia and then modifies them using Principal Component Analysis an Sin-
gular value Decomposition, and demonstrates that this simple approach is still a
very strong baseline.

STS differs from TE in as much as it assumes symmetric graded equivalence
between the pair of textual snippets, and in the case of TE the equivalence is
directional. Additionally, STS also differs from both TE and PARA in that STS
wants to incorporate the notion of graded semantic similarity rather than being a
binary yes/no decision. When we thought for the first time in creating it, the four
main objectives were the following:

1. To set a definition of STS as a graded notion which can be easily communi-
cated to non-expert annotators beyond the likert-scale.

2. To gather a substantial amount of sentence pairs from diverse datasets, and
to annotate them with high quality.

3. To explore evaluation measures for STS.

4. To explore the relation of STS to PARA and Machine Translation Evalua-
tion (MTE) exercises.

The first three objectives have been fulfilled during the development of this
thesis: the task has been defined, the datasets have been created, and an agreement
has been reached on how to evaluate the systems. The fourth objective, however,
has not been carried out and remains as work for the future.

As a result, STS has become a very popular task. Participation in the task has
been the highest of all SemEval/*SEM tasks, with the exception of 2014, in which
it was the second task with more participants, and STS datasets are widely used
in different areas.

After five editions of the competition the definition of the task is already very
consolidated. We are aware that the task has been criticized, arguing that it is not
completely well defined. However, observing the inter-tagger correlation scores

64



3.6. CONCLUSIONS

we can see that they are, in general, very high. High correlations prove that the
task is well defined and that this criticism does not make sense.

Another possible criticism to the task is that the differences between the scores
’are too fuzzy’. We are also aware of this, in fact, in the 2014 edition we presented
the sub-task of STS in spanish and the organizers of the task merged the ranks
4 and 3 into one. However, we think that this is not important, because STS
presents gradual similarity evaluation. It is not important if a scorer assigns a 4
or a 3, since what is really important is if they are in agreement on how to order
them, on which pair of sentences is more similar. The distribution of scores in the
datasets and the high inter-tagger agreement shows that the objective of achieving
gradual similarity values has been achieved.

Finally, contradiction and its place within STS is also a much discussed topic.
Working with this phenomenon is not one of the objectives of STS. There are other
tasks, such as Interpretable STS (iSTS), that do try to solve the contradiction, but
that is not the case of STS. In any case, there are not many cases of contradiction
in our datasets.

In the same period we have created and annotated 25 datasets, which make a
total of 15436 pairs of sentences. This makes them the largest collection of data
for STS. The quality of the annotations has been improved gradually each year,
rising from an average inter-tagger of approximately 70% in 2012 to an aprox-
imately 83% in 2015. Datasets are widely used for the evaluation of semantic
similarity and other related tasks.

In the 2012 competition there was a discussion on the best methods for eval-
uating STS systems. To the official proposal of the organizers two more methods
were added, one of which was later adopted as the official, the weighted mean
of correlations. In some editions, confidence scores were allowed along with the
STS scores, an they proved to be useful. While it is recognized that Pearson has
some problems, such as its erratic behaviour in the first edition when the files were
concatenated, it has been established as the standard measure for STS evaluation.

As we have seen, we have defined the task, we have created datasets for it,
and we have an agreement on how to evaluate the systems. With these premises,
the next obvious step is to make the most of the results of this work by creating
a high-level system for STS. In the next chapter we describe a system based on
our knowledge of the best current systems. We have seen the most commonly
used resources and techniques, and we noticed that none have worked using these
resources in combination. We truly believe that it is possible to gain greater benefit
from the knowledge within them.
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4
Cubes for Semantic Textual Similarity

In this section we present our system for Semantic Textual Similarity (STS). First
we introduce the motivation behind this system. In the next section we describe
how we build a cube where we store all the information we have available. Then
we explain how we make use of the information previously stored in the cube, and
how we produce a similarity score. Finally, we describe how we have designed
the evaluation of this system, and its comparison with the state-of-the-art.

4.1 Motivation
The best performing systems for STS presented in Chapter 2 make use of linear
regression models to combine multiple text similarity measures, such as UKP (Bar
et al. 2012) and Takelab (Šarić et al. 2012). Another popular approach for STS is
to use align word between sentences and scoring them with some resource (Sultan
et al. 2014a). Our hypothesis is that we can obtain better results combining word-
to-word similarity from different sources at the word level, in contrast to other
works where each resource is used independently. Consider the following pair of
sample sentences:

• President Obama warns Russia for taking over Ukraine.

• John Kerry admonished Russia for invading Ukraine.

The sentences above mean almost the same but aligning the words from one
sentence to the other is not trivial. If we search for the most similar word for
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’Obama’ in the second sentence it may be ’Kerry’, and the most similar for
’warns’ may be ’admonished’. Now suppose that we have a resource that is good
with named entities, and aligns ’Obama’ with ’Kerry’ with a high value. Nothing
guarantees that this same resource will be able to properly align ’warns’ and ’ad-
monished’ and score them with a high similarity. The same happens in the case of
a resource that is able to do well with ’warns’ and ’admonished’, which might not
do well with ’Obama’ with ’Kerry’. In this hypothetical example we would end
up with two similarity scores for these sentences, none of them being completely
adequate. Even is we use these values to feed a Machine Learning (ML) system
and improve the final result, we would use incomplete information.

Now consider that we can detect all these alignments using more that one re-
source at once. The first resource would be able to align ’Obama’ with ’Kerry’ and
the second one would be able to align ’warns’ and ’admonished’. But we could
also have another resource that would be able to properly align ’taking over’ with
’invading’ and score it with a high similarity. To achieve this goal it is important
to maintain as much knowledge as possible until the last step before the final deci-
sion, and if we compute the sentence similarity based on each resource separately
we are losing information.

4.2 Building Cubes
As we have seen in Chapter 2, most systems for STS are based on generating fea-
tures that are then used to feed an automatic learning system. A diagram of these
types of systems can be seen in Figure 4.1. As can be seen, in the intermediate
step different features are computed, some of which are already similarity values
derived from different resources such as word vectors, WordNet, PPDB or any
other resources. That is, these systems generate sentence similarity values (along
with other features), which they use to train an STS system.

Our idea is that we can combine these resources in a different way, and not just
use them for ML. To do this, we propose the systems presented by the diagrams in
Figure 4.2 and Figure 4.3. The former is a system that does not use any ML, taking
advantage of the joint knowledge, and extracting a final similarity score which
represents the token-wise similarity scores for each resource in different layers.
The system in Figure 4.3 uses the output of the former system in combination
with other features that are created for ML. Somehow, the second proposal is a
combination of our first system and a typical STS system as the one shown in
Figure 4.1. It combines features, the cube scores and scores for individual layers.
We expect that these two proposals will obtain better results, because we make
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better use of the resources than the typical systems shown in Figure 4.1. A more
detailed description of these systems is given below.

Figure 4.1 – Flowchart of a typical STS system, where feature_i corresponds
to resource_i.

Figure 4.2 – Flowchart of our system without ML, where layer_i corresponds
to resource_i, and each layer contains token-pair similarities.

In our preprocess step both sentences are tokenized and lemmatized, numbers
are normalized, and named entities are detected. To tokenize and lemmatize we
use the Stanford parser (Toutanova et al. 2003). When normalizing numbers we
search for numbers that are written in letters and convert them into numbers. Their
format is also normalized by removing commas (for example, converting 1,000 to
1000). To detect the entities we use the output of the Stanford parser, but we also
match them with the entities present in Wikipedia (see Section 4.2.1).

Once we have the words/lemmas from the previous step we can start the con-
struction of the cube. Each pair of sentences can be now represented by a N ×M
matrix, being N the number of tokens of the first sentence, and M the number
of tokens of the second sentence. We can fill this matrix with pairwise similarity
scores from any given source of information. For each of the resources we create
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Figure 4.3 – Flowchart of our system with ML. The STS scores from individual
layers, the STS score from the cube and additional features from are used to feed
a Linear Regressor.

a layer, where each cell contains the similarity score for a word in the first sen-
tence in respect to a word in the second sentence according to that resource. If
we do not find a similarity score for any resource using the words we try using
the lemmas in any combination: word/lemma, lemma/word, or lemma/lemma. If
we do not find a value for any of the combinations, the corresponding cell will
be marked as ’Not-a-number’ (NaN) in the layer of that resource. The latter is
important because we want to distinguish a zero from a NaN, because it is not the
same if a resource gives a 0 (’they are not similar al all’) or NaN (’I have no in-
formation about that’). For example, the cell (1, 3) of a layer in the cube contains
the similarity score of the first word of the first sentence in respect to the third
word of the second sentence according to a given resource d ∈ D (from now on,
sim(d, S11, S23), being D our layer collection). We can have as many matrices
as desired, where each of these matrices is a layer, forming a cube where each
dimension reflects a different source of information. For each of these layers, if
the tokens/lemmas are the same in both sentences, we assign the highest score to
this cell.

We have constructed a cube where we gather similarity values for each word
pair combination from the two sentences, according to different sources, and now

70



4.2. BUILDING CUBES

we need to select the best score for each pair of words/lemmas. Our hypothesis
and our motivation to build this cube is that we can improve the results using
token-wise similarities from several sources and combining them, instead of using
sentence-wise similarities independently.

This hypothesis is based on an analysis of examples from Train and Devel-
opment data using different resources. A False Negative (FN) occurs when a
resource gives a low value, but it should be high. This could indicate that the
resource does not have the necessary information to give a high value. We say
False Positive (FP) is less frequent, since it happens when a resource assigns a
high value, but it should be low. There are times when it may occur due to some
phenomena such as polysemy, but these cases are not very common according to
what we found in our analysis. This analysis showed that the resources have far
more FN than FP. Based on this observation, if one of the resources says that two
words are very similar then we trust it, and take that similarity score even if the
other resources yield a very low similarity. In the previous section we showed an
example of how selecting the highest similarity scores among different resources
can help in the task of evaluating two sentences. Thus, following this hypothesis
we are going to select the highest score for each word pair in the cube. In other
words, we align each word in the first sentence to the word in the second sentence
with which it has the highest score among all layers (and vice versa). An abstract
visualization of a cube formed by two sentences of length three and with three
layers is shown in Figure 4.4 (each layer is represented with a different color). In
this example The ’MAX’ in the figure represents that we are going to select the

Figure 4.4 – Abstract representation of a 3 × 3 cube with three layers (each
color is a layer) where we are selecting the maximum value (among all layers) in
the top right corner. This cell contains three similarity scores (one per resource)
for the 1st word in the first sentence with respect to the 3rd word in the second
sentence.
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highest value in any layer d as the similarity for sim(d, S11, S23).
A more complex example of a 11× 7 cube with four layers is shown in Figure

4.5. Good alignments are marked in green, and bad alignments are marked in
red. In this particular case ’troops’ has been aligned with ’massacre’ with a score
of 0.34, assigned by the third layer, when it should be aligned to ’police’. In some
cases it is not possible to make 1-1 alignments, either because the sentences are
of different lengths, or because there is no correspondence. In those cases, even
if the alignment seems to be incorrect, we consider them as good alignments if
the score is low (they are aligned, but they don’t have much influence). In this
example we aligned ’:’ with ’police’, or ’40’ to ’college’, but scores are low. We
can see the cube unfolded in Figure 4.6. As we can see, the first two layers are
completely filled, while the third and the fourth are more sparse (see Section 4.2.1
for further information).

Figure 4.5 – Representation of a 11 × 7 cube with four layers. Good alignment
are marked in green, and bad alignments in red.

Once we have the cube we can extract a similarity score using the pairwise
similarity score (Sections 4.3.1 and 4.3.2) and the features generated for ML (Sec-
tion 4.3.4). Before that, the following section describes all the layers with which
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Figure 4.6 – Unfolded representation of a 11 × 7 cube with four layers. The
first two layers are dense layers and the other two layers are more sparse. Good
alignment are marked in green, and bad alignments in red.

the cube is built.

4.2.1 Layers of the cube

This sections describes all the layers that form the cube. In general, we can distin-
guish two types of layers: distributional and those derived from knowledge bases.
The final cube is composed of eight layers, but we tried some other resources in
development. First, we describe the eight layers, and then we briefly explain some
of the discarded layers and the reason why they were discarded.

Representing words as vectors has become a popular way to address several
NLP task such as Textual Entailment (Dagan et al. 2010), Paraphrase Detection
(Dolan and Brockett 2005), Sentiment Analysis (Pang and Lee 2008) or Semantic
Textual Similarity (Agirre et al. 2012). These word vectors (or word embed-
dings) are constructed following the distributional hypothesis, where the meaning
of a word is learnt based on its context. They capture the distributional syntactic
and semantic information based on the word co-occurrence statistics on large cor-
pora (Mikolov et al. 2013b). Once we have an embedding for each word of our
vocabulary we can estimate the similarity of any two words by computing the co-
sine between word vectors. For the first two layers we used the cosine similarity
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between Collobert and Weston word vectors1 (Collobert and Weston 2008) and
cosine similarity between Mikolov word vectors2 (Mikolov et al. 2013b. (Socher
et al. 2011a) used Collobert and Weston word vectors for Paraphrase Detection,
computing the similarity score as the Euclidean distance between the word vec-
tors, with excellent results. Their system generates a probability for two sentences,
and they assign the label Paraphrase if this probability is 0.5 or higher. Given that
paraphrase and STS are closely related tasks and Collobert and Weston word vec-
tors did well in Paraphrase Detection, using them for STS is a very good starting
point. In addition, we used Mikolov word vectors to provide similar knowledge
but from different corpora and a different method. Our hypothesis is that both
word vectors are complementary.

Recent works also propose to encode word vectors using the structure stored
in knowledge bases (e.g. WordNet) (Goikoetxea et al. 2015). In this model,
the meaning of a word is encoded using random walks over the knowledge base,
where each random walk generates an artificial context for a given word. Then,
this artificial context is used to feed a Neural Network Language Model which
is able to learn word vectors. These word vectors differ from the previous two
because they encode the meaning based on a structured knowledge base, made
by human experts, instead using unlabeled corpora. Wordnet based word vectors3

provide more precise knowledge, but less coverage.

In the case of Wikipedia, we can use the Wikipedia dictionary (see UKB
package3) to detect entities present in the sentences and measure their mutual
similarity (Yeh et al. 2009). This dictionary is a list of strings with their corre-
sponding entities and frequencies. We identify all strings appearing as an entry
in our dictionary scanning the document tokens from left to right and consider
the longest possible span which has a dictionary entry as a candidate mention.
This method detects alls strings appearing in the dictionary, such as ’titanium’ or
’house’, not only entities. For example, in the example on Fig. 4.7 the system will
select both ’Bill_De_Blasio’ and ’New_York’ as candidate mentions. It would not
consider ’De_Blasio’ (there is already a longer match) nor ’as’ (it has no entry in
the dictionary). For the similarity score between this entries we use the Jaccard
Similarity Coefficient (see below) using the entities of the first and second strings
as the sets A and B respectively:

1http://metaoptimize.com/projects/wordreprs/
2code.google.com/p/word2vec
3http://ixa2.si.ehu.es/ukb/
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Jaccard(A,B) =
|A ∩B|
|A ∪B|

(4.1)

• Bill De Blasio sworn in as New York mayor, succeeding Bloomberg

• Bill_De_Blasio sworn_in New_York mayor succeeding Bloomberg

Figure 4.7 – Example of matching Wikipedia enties. The above sentence is the
original, and the second is the result after entities are detected. The words that
form an entity are joined using underscores (’_’), as in the case ’Bill_De_Blasio’
and ’New_York’.

One phenomena that happens when working with word vectors is that num-
bers are codified in very similar vectors, because they tend to appear in a identical
context. If we try to measure the similarity between 1,000 and 4 using word vec-
tors we will find that they almost mean the same. But ’4 dead in a car crash’
is not the same as ’1,000 dead in a car cash’. To fix this issue we use another
layer to deal with numbers. This layer will be a sparse matrix, where only the
cells comparing numbers will have a value. We first need to identify the numbers
contained in both sentences and, if necessary, transform them from text to nor-
malized numbers. Then, the similarity between two numbers is defined following
(Intxaurrondo et al. 2015) as:

Sim(num1, num2) = 1− |num1 − num2|
max(num1, num2)

(4.2)

Words can also be represented by clusters. (Brown et al. 1992) used a hierar-
chical algorithm that maximize mutual information of bigrams to generate word
clusters. (Clark 2003) made use of distributional and morphological information
to gather morphologically similar words in the same cluster. (Agerri and Rigau
2016) induced clusters from these word vectors by applying K-means clustering.
In their final data, similar words are clustered together. We can use clusters to fill
more layers, assigning 1 if both words in each of the sentences are in the same
cluster, and 0 otherwise. We use these three different clusters generated from dif-
ferent sources or corpora to add three more layers to the cube: Word2vec clusters,
Clark clusters and Brown clusters. In the case of Brown clusters, the clustering
algorithm is a hierarchical algorithm that produces a hierarchical clustering of the
words, usually represented as a binary tree. In these trees, the path from the root

75



CHAPTER 4. CUBES FOR SEMANTIC TEXTUAL SIMILARITY

to a leaf (a word) is represented as a bit string, and choosing only a given number
of bits on these path allows us to choose a different level of abstraction. In other
other words, if we choose the full path we are selected a more precise and smaller
cluster, and if we choose a subset of bits we are selecting an intermediate node of
the tree. For instance, in Fig. 4.8 we can choose ’00’ if we want to gather ’apple’
and ’pear’ in the same cluster. Based on training data, we decided to use paths of
length 17.

Figure 4.8 – A Brown clustering hierarchy.

In summary, the final cube is formed by the following layers:

1. Distributional: Cosine similarity between Collobert and Weston Word Vec-
tors.

2. Distributional: Cosine similarity between Mikolov Word Vectors.

3. WordNet: Cosine similarity between word vectors derived from WordNet
using random walks.

4. Wikipedia: Jaccard Similarity Coefficient of the entities present in Wikipedia.

5. Numbers: Heuristic similarity score for numbers.

6. Word2vec clusters: Similarity based on words sharing same cluster.

7. Clark clusters: Similarity based on words sharing same cluster.

8. Brown clusters: Similarity based on words sharing same cluster, using dif-
ferent abstraction levels.
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The first three layers produce a dense layer, where most of the cells have a
value. The other ones produce a sparse layer, where only the pairs occurring in the
resource have a value, and the rest are unattested. In addition to their particular
knowledge, all layers align tokens or lemmas that are exactly the same, with a
score of 1.0. The exception is the Numbers layer, which only aligns numbers, and
ignores the rest. The density of each of the layer in shown in Table 4.1.

Method
MSRpar12

Train
MSRvid12

Train HDL13-14 Images14 Mean

Collobert 80.49 83.25 77.60 82.20 80.89
Mikolov 43.35 41.40 44.89 46.24 43.97
WordNet 26.82 36.73 45.99 30.89 35.10

Wikipedia 4.45 10.26 9.89 8.12 8.18
Numbers 0.29 0.03 0.40 0.12 0.21

Clusters (Word2vec) 7.01 14.29 10.32 9.93 10.39
Clusters (Clark) 4.32 10.59 7.24 8.36 7.63

Clusters (Brown) 4.09 10.50 6.80 8.38 7.44

Table 4.1 – Layer density by dataset of train and development data (percentage
of cells with a non-zero value).

Discarded Layers

The final layers of the cube are the result of a development process. In this de-
velopment, other layers were tested on train and development data and discarded.
For completeness we also report them here.

The Paraphrase Database (PPDB) (Ganitkevitch et al. 2013) contains over
220 millions of paraphrase pairs (both words and phrases). The paraphrases
are extracted from bilingual parallel corpora (more than 100 million sentence
pairs and more than 2 billion words). Each pair includes a probability for one
word/phrase to be a paraphrase of the second word/phrase. These probabilities
can be easily used as similarity scores. PPDB yields conditional probabilities.
As our scores are undirected, in case the database contains values for both direc-
tions, we averaged both numbers. We tried the XXXL version using the lexical
paraphrases, One-To-Many, Many-To-One and the Phrasal Phrases. Few of the
paraphrases were found in our data, and therefore the layer hardly affected the
final results. This fact, together with the high computational and memory cost,
led to discard this layer.
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(Resnik 1995) presented a measure of semantic similarity metric based on the
notion of information metric. We added this metric to the cube, but when execut-
ing the system we did not get any improvement. This may be caused because the
provided information is already implicit within the cube through WordNet word
vectors.

We think that the final similarity score between two sentences is specially
based in the similarities between words/phrases that humans discern in those sen-
tences, and not on dissimilarities. This idea of giving more importance to simi-
larity (to higher values) than to dissimilarity (lower values) is important for some
decisions that are made in the next section. Nevertheless, we also considered the
addition of a penalty layer. To do so we used the dataset and the neural network
model presented in (Kruszewski and Baroni, 2015) to create word vectors for our
vocabulary that perform compatibility detection. This layer was designed to pe-
nalize cells where the words were detected as incompatible. The results were not
good enough, and the layer was discarded, although it is expected to incorporate
it in the future. As the layer was discarded, no analysis was carried out to support
this idea.

4.3 Producing the STS Score
At this point we have constructed a cube using information from several sources.
The next step is to use the information stored in the cube to produce a single
number for each of the pairs. In the next section we explain the formula used
to extract a similarity score from our cube. Right after we explain the technique
of the threshold (Section 4.3.2) and a variation of the cube, the hierarchical cube
(Section 4.3.3), which allowed to improve the performance during the designing
step. Finally we describe the ML features in Section 4.3.4. The threshold, the
hierarchical cube and ML features are optional (we can get a score without them),
unlike the scoring step, which is mandatory.

4.3.1 Pairwise similarity score
(Mihalcea et al. 2006) presented a method for measuring the semantic similarity
of texts as a function of the semantic similarity of the components words. They
did this by combining metrics of word-to-word similarity (similarity scores for a
given word pair) and word specificity (IDF scores for the words, see below) in a
formula capable to assign a good semantic similarity score for to input sentences
S1 and S2 :
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sim(S1, S2) =
1

2
(

∑
wi∈S1

(idf(wi) ∗ max
wj∈S2

Sim(wi, wj))∑
wi∈S1

idf(wi)
+

∑
wj∈S2

(idf(wj) ∗ max
wi∈S1

Sim(wj , wi))∑
wj∈S2

idf(wj)
) (4.3)

where Inverse Document Frequency (IDF) is an inverse function of the number
of documents in which that term occurs that can be used to quantify the specificity
of a term/word.

To produce a similarity score using our cube we extend the pairwise simi-
larity scoring function presented in (Mihalcea et al. 2006) to work with several
dimensions, where each dimension reflects a source of information. Following
our hypothesis (see Section 4.1), for each word in a sentence we search for the
maximum similarity value with a word in the other sentence across all the layers.
(Kusner et al. 2015) used a similar approach by matching directly to the nearest
neighbour (the most similar), ignoring the other neighbours. To compute IDF val-
ues we used the frequency lists from Brown and LOB corpora of written English
4. If a word is not in the IDF list we assign to it the highest IDF (it is considered
that provides the highest information). Once we have constructed the cube and
the IDF scores, we compute the final STS score using the new scoring function:

sim(S1, S2) =
1

2
(

∑
wi∈S1

(idf(wi) ∗ max
d∈D,wj∈S2

(αd ∗ Sim(d, wi, wj))∑
wi∈S1

idf(wi)

+

∑
wj∈S2

(idf(wj) ∗ max
d∈D,wi∈S1

(αd ∗ Sim(d, wj, wi))∑
wj∈S2

idf(wj)
) (4.4)

where αd represents a weighting value for each of the layers (d is a layer
and D is the total number of layers). This weighting is necessary because the
confidence of the different resources may not be the same (and it’s not). These
weights represent the confidence in each of the layers/resources. For instance, if
a layer with a weighting score of 0.3 assigns a similarity score of 0.8 (0.8*0.3 =
0.24) between two words and other layer with a weighting score of 0.9 assigns a
0.6 (0.93*0.6 = 0.54) the final similarity for those words will be 0.54. We set the
values of those free parameters (one per layer) in train and development data.

4http://sslmit.unibo.it/~baroni/brown_lob_fq_lists.html
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4.3.2 Threshold

As we have seen earlier, some resources generate a completely filled matrix, while
others create sparser matrices, where not all cells have a value. But the fact of hav-
ing a value does not guarantee that this value is appropriate or correct. Some re-
sources always yield a value however how different words may be between them.
In some cases it does not even make sense to relate these concepts. This effect
is most noticeable with word vectors, which can give values above zero even for
concepts that any human would find completely unrelated. Although this is not al-
ways the case, most of the values below a threshold could be considered as noise.
Since it is not desirable to increase the value of similarity due to this noise, we
apply a threshold below which all values become zero.

Preliminary tests applying this threshold substantially improved the final cor-
relation obtained with the cube, so we decided to incorporate it into the similarity
formula. However, to go one step further we decided to use this threshold as a
limit on which a ’bad alignment’ has been chosen. To do this, we look at whether
the maximum similarity value for a word on the first sentence with respect to the
words on the second sentence is less than the chosen threshold. This procedure is
intended to penalize bad alignments (something similar was tested in (Han et al.
2013)). This way, we now have two summations, one that we will call ’Positive’
and another ’Negative’, and also the two summations of the IDF values. There-
fore, the scoring function is now defined as follows.

Given a similarity between two tokens wi ∈ S1 and wj ∈ S2 we define:

sim(wi, wj) = idf(wi) ∗ max
d∈D,wi∈S1,wj∈S2

(αd ∗ sim(d, wi, wj)) (4.5)

where αd represents a weighting value for the layer d among our collection of
layers D, as seen in formula 4.4, we define two similarity formulas for sentences:

positive(S1, S2) =
( ∑

wi∈S1

sim(wi, wj) if max
wj∈S2

(sim(wi, wj)) >= threshold
)

+( ∑
wj∈S2

sim(wj, wi) if max
wi∈S1

(sim(wj, wi)) >= threshold
)

(4.6)
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negative(S1, S2) =
( ∑

wi∈S1

sim(wi, wj) if max
wj∈S2

(sim(wi, wj)) < threshold
)

+( ∑
wj∈S2

sim(wj, wi) if max
wi∈S1

(sim(wj, wi)) < threshold
)

(4.7)

Formula 4.6 is a summation of the alignments from the first sentence (S1) to
the second sentence (S2) and of the alignments from S2 to S1 where the similarity
between these word pairs is above the threshold. Formula 4.7 is the summation of
the alignments where the similarity is below the threshold. For example, suppose
that the third word of S1 (S13) has its maximum similarity with the fourth word of
S2 (S24), and that this similarity is 0.6 (sim(S13, S24) = 0.6). If the threshold is
0.5, this similarity will be added to positive(S1, S2) (Formula 4.6), and otherwise
to negative(S1, S2) (Formula 4.7). This is done for every word of S1 with its
maximum similarity to words of S2 (and vice versa).

We also define two formulas to measure the IDF of the sentences:

positive_idf(S1, S2) =
( ∑

wi∈S1

idf(wi) if max
wj∈S2

(sim(wi, wj)) >= threshold
)

+( ∑
wj∈S2

idf(wj) if max
wi∈S1

(sim(wj, wi)) >= threshold
)

(4.8)

negative_idf(S1, S2) =
( ∑

wi∈S1

idf(wi) if max
wj∈S2

(sim(wi, wj)) < threshold
)

+( ∑
wj∈S2

idf(wj) if max
wi∈S1

(sim(wj, wi)) < threshold
)

(4.9)

Formulas 4.8 and 4.9 are formulas to compute the IDF of the sentences. The
conditions are the same as for positive(S1, S2) (Formula 4.6) and negative(S1, S2)
(Formula 4.7), but instead of adding the values of sim(wi, wj) (Formula 4.5) for
each alignment above or below the threshold we sum the IDF score (idf(wi)) of
the words in S1 and S2.

Using these partial scores we tested the performance of the threshold using the
5 alternative formulas shown in Table 4.2. Convert to 0 is a formula that discards
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Method Description Formula

Convert to 0
The values below the threshold are con-
verted to zero.

positive(S1,S2)
positive_idf(S1,S2)+negative_idf(S1,S2)

Add and subtract
The values above the threshold are added,
and the values below are subtracted.

positive(S1,S2)−negative(S1,S2)
positive_idf(S1,S2)+negative_idf(S1,S2)

Only positives

The values above the threshold are added,
and the values below are ignored. The
IDF value of values below the threshold
is not computed (it’s not added in the de-
nominator).

positive(S1,S2)
positive_idf(S1,S2)

Only negatives

The values below the threshold are added,
and the values above are ignored. The
IDF value of values above the threshold
is not computed (it’s not added in the de-
nominator).

negative(S1,S2)
negative_idf(S1,S2)

Subtraction
We subtract the result of ’Only negatives’
to the results of ’Only positives’.

positive(S1,S2)
positive_idf(S1,S2)

− negative(S1,S2)
negative_idf(S1,S2)

Proportional sub-
traction

As ’Subtraction’, but we subtract more in
terms of how far away is the value from
the threshold. Thus, if the value is very
close to the threshold, we subtract a very
small value.

positive(S1,S2)
positive_idf(S1,S2)

− (prop_negative(S1,S2)
negative_idf(S1,S2)

)

Table 4.2 – Different methods for applying a threshold in the pairwise similarity
scoring.

everything that is below the threshold (does not sum up this scores). This method
can be used to filter the noise that may exist in some resources, removing residual
similarity scores. Add and substract adds to the summation the similarities that
are above the threshold, and subtracts the ones that are below. Only positives
takes into account those alignments whose value is above the threshold and ig-
nores the rest, including the IDF value of those words. Only negatives does the
same as Only positives, but with those that are below the threshold. Subtraction
is the result of subtracting Only negatives to the value of Only positives. Finally,
Proportional subtraction is a method to subtract less value if the score is near
the threshold, and more if this score is far below the threshold (similarities above
the threshold are summed up). After testing these methods on the training data,
we decided to use the Proportional subtraction method. Thus, negative(S1, S2)
(Formula 4.7) is substituted by prop_negative(S1, S2) (Formula 4.10), which is
defined as follows:
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prop_negative(S1, S2) =
( ∑

wi∈S1

prop_sim(wi, wj) if max
wj∈S2

(sim(wi, wj)) < threshold
)
+

( ∑
wj∈S2

prop_sim(wj , wi) if max
wi∈S1

(sim(wj , wi)) < threshold
)

(4.10)

where prop_sim(wi, wj), the similarity between two words wi ∈ S1 and wj ∈
S2, is now defined as follows:

prop_sim(wi, wj) = idf(wi) ∗ |threshold−max
d∈D

(αd ∗ Sim(d, wi, wj))| (4.11)

where αd represents a weighting value for the layer d among our collection of
layers D as seen in Formula 4.5. Using this formula the values that are below the
threshold subtract more the more lower they are. In other words, if they are below
the threshold but only by a close margin they are not considered as completely
bad alignments, and they almost penalize.

4.3.3 Hierarchical cube

A side effect of using weighting values for each of the layers is that we may need
to choose a very low score for some layers just to be able to choose the most
accurate score among the layers. If the ’correct’ similarity between two words
is given by the layer based on WordNet but this score is low (for instance, 0.4)
and another layer has a score of 0.9 we need the weighting value of the second
layer to be 0.4 or lower. Layers based on knowledge bases (such as WordNet and
Wikipedia) assign more accurate values, despite the fact that they produce more
sparse layers. In order to obtain the best results we are constraining the possible
values for the weighting scores of the layers.

A Hierarchical cube solves this issue dividing the cube in two different levels.
The upper levels includes the most accurate and reliable layers: all except the
distributional layers, based on Collobert and Weston and Mikolov word vectors.
This layers are usually more sparse but their scores are trustworthy, specially if
they are specialized (such as numbers). We use the same approach used in the
previous section, selecting the highest score (after weighting) for each pair of
words among the layers on the upper level. If we don’t have a score for a given
pair of words, we choose the highest score (after weighting) among the layers of
the lower levels. This approach allows us to choose high weighting values for
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the layers on the lower level while still selecting the more accurate values of the
layers on the upper level.

4.3.4 Machine Learning

Apart from all the knowledge stored in the cube, there are other features or char-
acteristics of the sentences, which is important to model. Therefore, we generate
ML features that we will use to feed a Linear Regressor.

Once we obtain the similarity score from the cube using the pairwise similarity
formula we feed a Linear Regressor with this number and other features from
other knowledge sources not present in the cube. These features include 8 features
extracted using the ROUGE package (Lin 2004), 6 features for numbers, 3 features
for Named Entities, 3 features for the length of the sentences, and 10 features from
Interpretable STS (Lopez-Gazpio et al. 2017).

ROUGE is a package for automatic evaluation of summaries. It includes mea-
sures to automatically determine the quality of a summary by comparing it to other
(ideal) summaries created by humans (Lin 2004). Instead of using an automati-
cally generated summary and comparing it to another one created by humans we
used the ROUGE package to measure the similarity between two sentences. We
use one sentence as an automatically generated sentence and the second one as the
human created sentence and run the system. The following features were selected
and generated employing the ROUGE package (Lin 2004):

• Rouge-1.

• Rouge-2.

• Rouge-3.

• Rouge-4.

• Rouge-L.

• Rouge-W1.2.

• Rouge-S*.

• Rouge-SU*.
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Even if we have a layer for numbers we added five additional number features
because numbers are very relevant for STS. A difference between numbers in
two sentences can drastically modify the similarity, changing them from being
equivalent to something that can be a contradiction, leading the annotators to score
them with a very low value. We fed the Linear Regressor with the following
features:

• Number of numbers in the first sentence.

• Number of numbers in the second sentence.

• Absolute difference.

• (Boolean) 1 if both sentences contain exactly the same numbers or they
don’t contain any number, and 0 otherwise.

• (Boolean) 1 if both sentences contain exactly the same numbers, and 0 oth-
erwise.

• (Boolean) 1 if the numbers in one sentence are a subset of the numbers in
the other sentence, and 0 otherwise.

In the same way than numbers can change the similarity between two sen-
tences, this can also happen with named entities. Even if we handle this with the
Wikipedia layer we add features to control if there is an excessive difference in
the number of entities in the two sentences. We do the same with the length of the
sentences, because a big difference may suggest that there is missing information.
The last six features are the following:

• Number of entities in the first sentence.

• Number of entities in the second sentence.

• Absolute difference in the number of entities.

• Number of tokens in the first sentence.

• Number of tokens in the second sentence.

• Absolute difference in the number of tokens.

Interpretable STS (iSTS) is a task which goal is to provide an explanatory
layer to regular STS. We use featured from iSTS to feed the ML system:
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• Number of aligned segments.

• Number of segments labeled as Equivalent.

• Number of segments labeled as Specific.

• Number of segments labeled as Similar.

• Number of segments labeled as Related.

• Number of segments labeled as Opposite.

• Number of segments labeled as Equivalent, Specific or Similar with an
score of 4 or higher.

• Number of segments labeled as Equivalent, Specific or Similar with an
score of 3 or higher.

• Number of segments labeled as Equivalent, Specific or Similar with an
score of 2 or higher.

• Average score among aligned segments.

4.4 Evaluation
In this section we will evaluate the cube. Its performance will be compared with
another method in which the cube is not used globally, but using each layer indi-
vidually. The cube will also be evaluated against the best STS systems.

Among all the datasets created for STS, and introduced in Section 3.3, we have
selected only those that present a more natural language. The sentences in this
datasets are more natural than in other datasets such as OnWN, FnWN, or SMT
(glosses from OntoNotes-WordNet and FrameNet-Wordnet respectively, and sen-
tences from Machine Translation evaluation), which include automatically trans-
lated sentences. We evaluated our system on the MSR Paraphrase (paraphrases
from news sources), MSR Video (descriptions of short videos provided by anno-
tators), Headlines (headlines from real news, present in the 2013 and 2014 task)
and Images (captions of images, present in the 2014 task) datasets. We divided
the datasets into train, development and test as shown in Table 4.3.

When splitting a dataset into two parts, it has been taken into account to main-
tain the distribution of the values. Thus, in each half there is a similar quantity of
similarities for each range ([0-1], ..., (4-5]).
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Name Description Pairs

Tr
ai

n

MSRpar12 Train MSR Paraphrase train set (STS 2012). 750
MSRvid12 Train (50%) 50% of MSR Video train set (STS 2012). 375
HDL13 Headlines dataset (STS 2013). 750
Images2014 (50%) 50% of Images dataset (STS 2014). 375

D
ev

. MSRvid12 (50%) 50% of MSR Video train set (STS 2012). 375
HDL14 Headlines dataset (STS 2014). 750
Images2014 (50%) 50% of Images dataset (STS 2014). 375

Te
st

MSRpar12 Test MSR Paraphrase test set (STS 2012). 750
MSRvid12 Test MSR Video test set (STS 2012). 750
HDL15 Headlines dataset (STS 2015). 750
HDL16 Headlines dataset (STS 2016). 249
Images2015 Images dataset (STS 2015). 750

Table 4.3 – Data split into Train, Development and Test sets.

To evaluate the performance of the system we use the official scorer provided
by the STS organizers, which computes the Pearson Correlation score between
the system scores and the Gold Standard scores (see Section 3.5.1).

4.4.1 Train
Once we have built the cube and designed the scoring function we used the train-
ing set to measure its performance and select the parameters. As a first step, we
evaluate each resource individually on Training data (as if the cube only had one
layer) to estimate the minimum performance for the cube, and to see the reliability
of each resource. In this phase it is perceived that the distribution of similarity val-
ues from different resources is not the same. For example, according to Jaccard
over Wikipedia a similarity value of 0.2 is a very high value, since this value is
within the 5% of highest values. To solve this, we adjust some curves, changing
the values of the resources, so that they individually obtain the highest possible
correlation (see table 4.4 for adjustments). Once each resource has been adjusted,
the optimal parameters are searched using Grid-search to assign the weights for
each layer, as well as the threshold that produce the best results (the final parame-
ters are in the table 4.7). In the case of individual layers it does not make sense to
weight the layer, but we make use of the threshold.

The next part of the development consisted on testing on the training set all the
possible configurations presented in the previous sections. These configurations
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Layer
Collobert Mikolov Wikipedia
sim = sim3 sim = sim3 sim = 5

√
sim

Table 4.4 – Curve adjustment for layers.

Method
MSRpar12

Train
MSRvid12
Train (50%) HDL13

Images14
(50%) Mean

Collobert 0.436 0.643 0.561 0.656 0.574
Mikolov 0.341 0.615 0.325 0.656 0.484
WordNet 0.682 0.805 0.755 0.800 0.760

Wikipedia 0.663 0.774 0.772 0.762 0.742
Numbers -0.120 0.066 0.089 0.063 0.024

Clusters (W2v) 0.634 0.581 0.666 0.706 0.647
Clusters (Clark) 0.656 0.769 0.747 0.762 0.734

Clusters (Brown) 0.659 0.637 0.728 0.704 0.682
LR (I) 0.684 0.803 0.767 0.803 0.764

LR (I+F) 0.719 0.814 0.790 0.816 0.785
Hierarchical Cube 0.691 0.826 0.784 0.816 0.779

LR (I+C) 0.694 0.826 0.783 0.822 0.781
LR (C+F) 0.725 0.828 0.799 0.811 0.791

LR (I+C+F) 0.725 0.830 0.804 0.829 0.797

Table 4.5 – Results of our system on Train data using 10-fold cross validation.
LR is a Linear Regressor fed with different scores and features: scores from
Individual layers (I), the cube score (C), and ML features (F).

include testing and refining the similarity function (Section 4.3.1), tests to choose
the best method to use the threshold (Section 4.3.2), compare the initial cube
with the hierarchical cube (Section 4.3.3), and design and discard the features for
ML (Section 4.3.4). These tests on the training set have led to the decisions and
the final design presented in Sections 4.2.1 and 4.3. All these partial results are
computed using 10-fold cross validation.

Once these decisions were made and the final design of the system was de-
fined, for each individual layer we obtain the correlations reflected in the table
4.5, being the best resources WordNet and Wikipedia. The result of the cube is
reflected in the line ’Hierarchical Cube’, improving the best individual result by
almost 2 points. But in order to compare this value we need to compare it with a
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system that has access to the same knowledge and the same information. Using
a linear regressor5 we combine the outputs of all the individual layers obtaining
the result of the line ’LR (I)’. The cube gets a higher score, almost 2 points better,
without using ML. In the table 4.5 there are additional results using the features
for Machine Learning presented in Section 4.3.4. The legend used on table 4.5 for
the linear regressor is as follows:

• (I): Fed with the scores of all the individual layers.
• (I+F): Fed with the scores of all the individual layers plus ML features.
• (I+C): Fed with the scores of all the individual layers and the scores from

the cube.
• (C+F): Fed with the scores of the cube plus ML features.
• (I+C+F): Fed with the scores of all the individual layers, the scores from the

cube, and ML features.
All the features we incorporate to the linear regressor improve the correlation,

demonstrating that they are useful and complementary to the previous ones. The
best result using the cube is the one obtained by the ’LR (I+C+F)’, which on
average obtains a result 1.2 higher than the best result that does not use the cube,
’LR (I+F)’.

4.4.2 Development
In the previous section we have created the preliminary system, whose evaluation
has been done using cross-validation. To validate those results, the next step is
to use the Development set as Test set. Using the values obtained training on
the Train set for the different parameters of the cube, we evaluate the system on
Development set. We used the values chosen for the first half of MSRvid and
Images on the second half, and the values obtained for HDL13 on HDL14.

Table 4.6 shows the development results. The values of the parameters have
not been adjusted on the datasets itself, and in spite of this the results are main-
tained. The best result with the cube (’I+C+F’) gets 1.9 points of improvement
in respect to the best result without the cube (’I+F’). The results in general are a
reflection of those obtained on the train using cross-validation. This proves that
this system is viable and has a good performance, where each of the features im-
proves the previous result. The next step is to merge the training and development
sets. With this larger dataset we find again the optimal values of the parameters.
Being the training set larger, the values obtained will be more stable to use them
on the Test set.

5Weka implementation for Linear Regressor (LR), without attribute selection.
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Method
MSRvid12
Train (50%) HDL14

Images14
(50%) Mean

Collobert 0.726 0.552 0.636 0.638
Mikolov 0.638 0.321 0.590 0.516
WordNet 0.841 0.718 0.755 0.771

Wikipedia 0.821 0.762 0.713 0.765
Numbers 0.079 0.052 0.041 0.057

Clusters (W2v) 0.653 0.646 0.649 0.649
Clusters (Clark) 0.826 0.707 0.720 0.751

Clusters (Brown) 0.683 0.696 0.679 0.686
LR (I) 0.839 0.759 0.766 0.788

LR (I+F) 0.838 0.783 0.793 0.804
Hierarchical Cube 0.853 0.758 0.790 0.800

LR (I+C) 0.854 0.763 0.800 0.805
LR (C+F) 0.856 0.777 0.822 0.818

LR (I+C+F) 0.858 0.785 0.827 0.823

Table 4.6 – Results of our system trained on Train data and tested on Devel-
opment data. LR is a Linear Regressor fed with different scores and features:
scores from Individual layers (I), the cube score (C), and ML features (F).

The training data for MSRpar and MSRvid is going to be the Train datasets
(full datasets) from STS2012 and will be evaluated on the Test dataset for MSR-
par and MSRvid of the same year. HDL13 and HDL14 are put together and
the optimum values obtained for them will be used to evaluate on HDL15 and
HDL16. Finally, the values trained on Images14 (full dataset) will be used to
evaluate on Images15. The results (omitted for brevity) are similar to the previous
ones, obtaining an improvement of 1.7 points thanks to the cube (’Lin. Regressor
(I+C+F)’) with respect to the best result without using it (’Lin. Regressor (I+F)’).

The optimal parameters found in this step are shown in Table 4.7, which turned
out to be quite similar to the ones obtained with the train data, with only small
variations. The weights for WordNet and Wikipedia are always high, indicating
that their knowledge is always useful and accurate. Other resources obtain very
different weights for the different datasets. For instance, Clark clusters’ weight is
high for MSRvid and HDL datasets, but low for MSRpar and Images. Collobert
word vectors are quite useful for HDL, but they are not selected for MSRvid and
Images datasets. We are going to use these optimal parameters to run the system
on Test data in the next section.
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Collobert 0.2 0.0 0.0 0.4 0.3 0.0 0.0
Mikolov 0.6 0.5 0.6 0.5 0.3 0.5 0.6
WordNet 1.0 0.9 0.8 0.9 0.7 0.8 0.8

Wikipedia 1.0 0.9 0.8 1.0 1.0 0.8 0.7
Numbers 0.0 0.9 0.8 0.3 0.3 0.5 0.4

Clusters (W2v) 0.4 0.0 0.0 0.1 0.1 0.0 0.0
Clusters (Clark) 0.4 0.8 0.8 1.0 1.0 0.3 0.4

Clusters (Brown) 0.7 0.0 0.0 0.1 0.4 0.0 0.0
Threshold 0.0 0.1 0.1 0.1 0.0 0.1 0.1

Table 4.7 – Final selection of parameters based on Train+Development data.

4.4.3 Test

Once the system is optimized with the values of the table 4.7, we execute it on
the Test set. For MSRpar and MSRvid test sets we train on MSRpar and MSRvid
train data, for HDL15 and HDL16 we train on HDL13 and HDL14 (merged), and
for Images15 we train on Images14. The results are shown in the table 4.8. The
differences in this table (those lines in italic and starting with a ∆) are multiplied
by 100, to appreciate them better (we do this with any other table as well). The
results that were observed in table 4.6 are reflected in the results obtained for
the test set, and each of the features and characteristics employed improves the
correlation.

Our Hierarchical Cube geta a mean correlation of 0.789, which is comparable
to the result obtained by the linear regressor fed with the scores from the individual
layers. It is important to emphasize that we are comparing a system that uses ML
against another one that does not use ML, and still the cube is comparable to the
linear regressor model (line ’∆ LR (I)’ on table 4.8). When we compare the best
linear regressor model fed with the cube against the best linear regressor model
trained without the cube we see that the cube overperforms the last one by 1.48
points (line ’∆ LR (I+F)’ on table 4.8). This demonstrates that we could extract
more knowledge of our resources thanks to the cube.
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Method
MSRpar12

Test
MSRvid12

Test HDL15 HDL16 Images15 Mean

Collobert 0.392 0.705 0.603 0.523 0.691 0.583
Mikolov 0.308 0.621 0.441 0.362 0.695 0.485
WordNet 0.608 0.849 0.796 0.790 0.839 0.776

Wikipedia 0.591 0.818 0.812 0.800 0.811 0.766
Numbers -0.092 0.043 0.092 0.011 0.193 0.049

Clusters (W2v) 0.568 0.697 0.741 0.722 0.726 0.691
Clusters (Clark) 0.580 0.821 0.783 0.771 0.811 0.753

Clusters (Brown) 0.581 0.682 0.765 0.752 0.753 0.706
LR (I) 0.626 0.857 0.814 0.804 0.847 0.790

LR (I+F) 0.694 0.851 0.814 0.807 0.833 0.800
Hierarchical Cube 0.615 0.863 0.816 0.805 0.849 0.789

∆ LR (I) -1.13 +0.60 +0.16 +0.07 +0.20 -0.02
LR (I+C) 0.630 0.873 0.822 0.812 0.859 0.799
LR (C+F) 0.685 0.846 0.816 0.807 0.838 0.798

LR (I+C+F) 0.697 0.889 0.823 0.816 0.847 0.814
∆ LR (I+F) +0.34 +3.78 +0.95 +0.84 +1.47 +1.48

C
hi

m
er

a-
1 UKP-run2 0.683 0.874

0.815DLS@CU-S1 0.825 0.864
Samsung 0.828

∆ LR (I+C+F) +1.40 +1.46 -0.16 -1.20 -1.70 -0.04

C
hi

m
er

a-
2 Takelab-simple 0.734 0.880

0.831
Samsung-delta 0.842
Samsung-beta 0.871

Samsung 0.828
∆ LR (I+C+F) -3.73 +0.82 -1.83 -1.20 -2.39 -1.67

Table 4.8 – Results of our system on Test data. LR is a Linear Regressor fed
with different scores and features: scores from Individual layers (I), the cube
score (C), and ML features (F). ∆ LR (I) is the difference between Hierarquical
Cube and LR (I). ∆ LR (I+F) is the difference between LR (I+C+F) and LR
(I+F). ∆ LR (I+C+F) is the difference between LR (I+C+F) in respect to the
virtual Chimera-1 and Chimera-2 systems.
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Regarding the state-of-the-art, we can’t compare the cube with any system
that competed all the years, and therefore we have created two chimera systems.
Chimera-1 is a mixture of the systems that won the competition in the year of re-
lease of the datasets (the system that obtained the highest mean correlation), and
gathers the results of UKP-run2 (2012) (Bar et al. 2012), DLS@CU-S1 (2015)
(Sultan et al. 2015) and Samsung (2016) (Rychalska et al. 2016). Chimera-2
is a mixture of the systems that achieved the highest correlation in each of the
datasets, and gathers Takelab-simple (2012) (Šarić et al. 2012), Samsung-beta
(2015), Samsung-delta (2015) (Han et al. 2015) and Samsung (2016). These sys-
tems may be specialized in that particular dataset, and perform poorly on other
datasets. Our system matches the performance of the Chimera-1 system, and is
only 1.67 point below the Chimera-2 system. It is necessary to take into account
that Chimera-2 obtains the highest possible result derived from choosing the best
system in each dataset. Still, our system is close to Chimera-2, demonstrating that
the cube contributes enough to make our system a system state-of-the-art system.

4.4.4 Ablation test

Finally, in Table 4.9 we present an ablation test. The differences listed in the
’Loss’ column are shown multiplied by 100, to appreciate them better. In this
table we can see that the losses derived from removing layers are generally small,
with the exception of the WordNet layer, without which the systems result drops
2.5 points. This happens because the resources are complementary to each other,
but there is also some overlap between them. This makes the cube very stable,
since if one layer fails or is removed from the cube another is able to assume this
loss. To check this fact we add three more lines:

• Distributional: We removed both Collobert and Mikolov layers, to see the
effect of removing the lower level of the cube (and the two denser layers).
When we remove this two layers at the same time, the system practically
losses the sum of the losses of these layers separately.

• Wn, Wiki: We also remove WordNet and Wikipedia at the same time, be-
cause in the absence of one the other replaces it. As it is seen, removing
Wordnet causes a loss of 2.5 points and removing Wikipedia a loss of 0.7
points, but removing both layers causes a loss of 3.9 points, which is more
than the sum of both.

• Cluster: We also remove the three layers of clusters to see their contribution.
In this case the loss is not as pronounced as in the two previous cases.
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4.5 Conclusion
In this section we present a system for Semantic Textual Similarity based on the
idea of a better combination of resources. We have constructed a cube of pairwise
token similarities where each resource is added as a layer of this cube. Our hy-
pothesis was that we can obtain better results combining word-to-word similarity
from different sources at the word level, in contrast to other works where each
resource is used independently. We investigated with several resources and after
a selection process on train and development data we selected eight of them.

We have experimented with different metrics to extract a STS score from the
cube. We used a well-known pairwise similarity scoring function and extended
it to work with more than one dimension. We explored other ways to improve
the system, using a thresholding technique to remove noise from the cube, and
to detect bad alignments between candidate words and penalize them. We also
studied the behaviour of the cube on the train data, and after we carried out this
analysis we transformed the cube into a two-level hierarchical cube that improved
the results. In addition to the cube we generated several features and trained a ML
model using these features and the knowledge stored in the cube.

This system has obtained state-of-the-art results. The better results when using
the cube show that our hypothesis was true, both with ML and without ML. The
ablation test performed on the system demonstrated that the system is also very

Method
MSRpar12

Train
MSRvid12

Train HDL13-14 Images14 Mean Loss

Hierarchical Cube 0.691 0.841 0.775 0.804 0.778 -
- Collobert 0.687 0.840 0.755 0.802 0.771 -0.7
- Mikolov 0.688 0.837 0.770 0.795 0.773 -0.5
- WordNet 0.679 0.809 0.730 0.793 0.753 -2.5

- Wikipedia 0.685 0.840 0.756 0.802 0.771 -0.7
- Numbers 0.687 0.840 0.770 0.802 0.775 -0.3

- Cl. (Word2vec) 0.687 0.840 0.774 0.802 0.776 -0.2
- Cl.(Clark) 0.687 0.840 0.773 0.802 0.776 -0.2

- Cl. (Brown) 0.682 0.840 0.772 0.802 0.774 -0.4
- Distributional 0.689 0.837 0.745 0.795 0.767 -1.1

- WN, Wiki 0.670 0.806 0.700 0.777 0.738 -3.9
- Clusters 0.681 0.840 0.770 0.802 0.773 -0.5

Table 4.9 – Ablation Test on Train+Development data.
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strong and stable. Despite these good results, we believe that there are still more
efficient methods to take better advantage of the knowledge stored in the cube.
One of these methods may be to achieve the optimal alignments inside the cube
by training an alignment selection algorithm.

A preliminary version of the cube was used in a system for Interpretable STS
(Agirre et al. 2015b). Evaluation on iSTS is based on four criteria: alignments
between chunks, type of alignment between chunks, similarity score between
aligned chunks, and a combination of type and score. Similarity scores provided
by the preliminary cube obtained the best performance among all submitted sys-
tems.
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5
Typed Similarity

In this chapter we introduce a new task related to Semantic Textual Similarity
(STS). Typed similarity aims to identify the type of relation that holds between a
pair of similar items in a digital library, and allows to provide an explanation of
why items are similar, with applications to recommendation, personalisation and
search.

We investigate the problem within the context of Europeana, a large digital
library containing items related to cultural heritage. A set of similarity types was
identified, and a set of 1500 pairs of items from the collection were annotated
using crowdsourcing.

In the next chapter we present several approaches to automatically identifying
the type of similarity that has been used in a real-world application.

5.1 Introduction
Nowadays there is a lot of cultural heritage material available through online por-
tals. The immense amount of material can be overwhelming for users, spoiling
their experience while exploring all these items. This negative sensation of user is
increased if they do not receive any help in this exploration. This contrasts with
the real world, where museums are organized by theme, or where you can consult
the museum staff.

Search engines and digital libraries often allow users to search for similar
items, an important function which supports exploratory search (Marchionini 2006)
and sense-making (Hearst 2009). Users are often provided with similar items in
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the form of a link from an individual item to a set of others in the collection. For
example, Google Scholar1 and PubMed2, both digital libraries containing aca-
demic publications, provide users with such links. Google Scholar has a link to
’Related Articles’ and PubMed to ’Related Citations’. This feature is so impor-
tant that it is implemented in many open-source search engines, e.g. Lucene and
Terrier (Ounis et al. 2006; McCandless et al. 2010).

Similar items are normally identified using word-overlap measures. Following
this approach, the similarity of a pair of documents is determined by counting the
number of words they have in common, possibly with adjustment for factors such
as document length and word frequency (Baeza-Yates and Ribeiro-Neto 1999;
Manning and Schütze 1999; Jurafsky and Martin 2009). This approach has the
advantage of being robust, straightforward to compute and is useful for identifying
pairs of documents describing closely related topics.

Providing good recommendations is not easy, as items in collections can be
similar in different ways. For example, two documents in a collection could be
considered to be similar if they discuss the same topic or are written in the same
style. The ways in which items can be considered similar also varies between
collections. In collections of academic publications, such as Google Scholar or
PubMed, pairs of citations could be considered to be similar for several reasons
including being written by the same authors, citing the same publications, describ-
ing the same type of scientific investigation (e.g. a clinical trial or a meta study) or
having the same conclusions. In different collections other features may be more
relevant for determining whether items are similar. Existing methods for identi-
fying similar items within collections do not acknowledge that there are different
ways in which items can be similar.

Personalised Access to Cultural Heritage Spaces (PATHS)3 was a three year
project on the development of exploratory search interfaces for cultural heritage
collections, including Europeana (Agirre et al. 2013a), funded by the European
Commission under the Digital Libraries and Digital Preservation Program. The
goal of the PATHS project is to create a system that helps users navigate through
vast collections of art, offering a personalized tour according to the items they
prefer. This system offers suggestions to the user as they navigate, offering similar
or related items in some way, marking a path to follow. These paths can be based
on anything: the theme or artist, the type of artwork, similar periods or places, etc.
Users can create their own paths or follow other predefined paths.

1http://scholar.google.com/
2http://www.ncbi.nlm.nih.gov/pubmed
3http://www.paths-project.eu
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5.1. INTRODUCTION

Figure 5.1 – Example of similar items, where the similarity is not based in the
painting itself nor in the authors, but in the people involved in them.

The work described in this chapter is related to the PATHS project, and ex-
plores the problem of identifying different types of similarity4 in a large digital
library containing a collection of information about cultural heritage items, Eu-
ropeana (see Section 5.2). The nature of the cultural heritage domain makes it
appropriate for exploring the typed similarity problem. There are several ways in
which the items in cultural heritage can be considered to be similar. For instance,
in Figure 5.1 we can see two items, where person shown is not the same: the
man on the left is ’Pablo Picasso’, the famous painter, and the boy in the right
is an anonymous teenager. However, while the author of the photograph of ’Pi-
casso’ is ’Emmanuel Radnitzky’, the author of the portrait of the teenager is ’Pablo
Picasso’. Although the items do not share the author either, we can see that ’Pi-

4We use the term similarity since it is more commonly used in the research literature. We
acknowledge the distinction between similarity and relatedness, and ask annotators to judge sim-
ilarity between items (see later sections). However, the term similarity is used to capture both
concepts for simplicity.
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casso’ in involved in both, and with this information we can claim that these two
items are similar because both of them are related to ’Picasso’. Identifying these
similarities has useful applications, including making recommendations (Resnick
and Varian 1997; Grieser et al. 2007; Bohnert et al. 2009), supporting exploratory
search (Marchionini 2006), personalisation (Bowen and Filippini-Fantoni 2004;
O’Donnell et al. 2001) and (automatic) tour generation (Finkelstein et al. 2002;
Roes et al. 2009; Agirre et al. 2013a).

This chapter also present the first dataset for the typed similarity task. The
dataset contains pairs of Cultural Heritage items from Europeana to which we
assigned scores for a range of similarity types: similar author, similar people in-
volved in the items, similar time period, similar location, similar event, similar
subject and similar description. The dataset contains 1500 pairs of items that
were manually annotated with those types using crowdsourcing. The annotators
assigned a number between 0 (completely unrelated) to 5 (identical) for each type
of similarity. The annotations are reliable, as demonstrated by high inter-tagger
correlation agreement.

The next section describes Europeana, the digital library used in this study.
Section 5.3 introduces the types of similarity that we used in this work and the
method to gather and annotate the pairs of items that comprise our dataset. Section
5.4 presents some discussion and analysis of the dataset. Finally, Section 5.6
presents some conclusions.

5.2 Europeana
Europeana5 is a web-portal that acts as a gateway to collections of cultural heritage
items provided by a wide range of European institutions. It currently provides ac-
cess to over 54 million digital records describing paintings, films, books, archival
records and museum objects. The items are provided by around 1,500 institutions
which range from major institutions, including the Rijksmuseum in Amsterdam,
the British Library in London and the Louvre in Paris, to smaller and special-
ized organisations such as local museums. It therefore contains an aggregation of
digital content from several sources and is not connected with any one physical
museum.

Europeana stores the metadata about each item in an XLM-based format based
on the Dublin Core standard. Information stored in this metadata includes a title
(<dc:title>) and description (<dc:description>) for the item. There

5http://http://www.europeana.eu
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may also be information about the item’s creator (e.g. painter, sculptor or photog-
rapher), stored in the <dc:creator> field, and date of creation, stored in the
<dc:date> field. The date may be a specific date (e.g. 5th November 1905) or
a time period (e.g. Bronze Age). The <dc:collection> field provides infor-
mation about the collection the item came from (e.g. Kirklees Image Archive). Fi-
nally, cataloging information is provided for some items in the <dc:subject>
field. This contains information about the item from a controlled vocabulary such
as Library of Congress Subject Headings6 or the Art and Architecture Thesaurus7.
An example of metadata in the format used within Europeana is shown in Figure
5.2.

<dc:title>toy coins, crown (coin), toy coins</dc:title>

<dc:creator>The Fitzwilliam Museum, Cambridge, UK</dc:creator>

<dc:subject>Victoria (1837-1901) crown (coin) toy coins</dc:subject>

<dc:description>Artist: Victoria (1837-1901), ruler - Queen of

Great Britain 1837-1901; Date(s): 1887 - 1901; Classification(s):

toy coins, crown (coin), toy coins; Acquisition: given by Withers,

Paul, 2003-11-25 [CM.2666-2003]</dc:description>

Figure 5.2 – Example of information about an item available in Europeana

The metadata are created by different content providers and vary signifi-
cantly across items. Many of the items have only limited information associated
with them, for example a very brief title. There is significant variation in the
amount of information provided for some fields. For example, for some items
the <dc:description> field contains over a thousand words of text while for
others it is empty. In addition, the content providers that contribute to Europeana
use different controlled vocabularies and it is not straightforward to establish cor-
respondences between them. Some providers do not make any use of controlled
vocabularies so there is no information in the <dc:subject> field for many
items. This variation in the information available makes the problem of determin-
ing the similarity between items quite challenging.

6http://authorities.loc.gov/
7http://www.getty.edu/research/tools/vocabularies/aat/

101

http://authorities.loc.gov/
http://www.getty.edu/research/tools/vocabularies/aat/


CHAPTER 5. TYPED SIMILARITY

5.3 A dataset for typed similarity
This section describes the construction of a manually annotated dataset for typed
similarity generated from Europeana. First, we explain how we defined the dif-
ferent similarity types. Then we describe how the item pairs were selected. After
that we describe in detail how we annotated the dataset and evaluate its quality.
The dataset is freely available8.

5.3.1 Defining similarity types

The importance of typed-similarity was identified as part of PATHS9. The inter-
face developed by the project provided information about similar items in collec-
tions and recommendations about items a user might like to consult. Users of
the system requested more information about why items were considered similar.
Consequently we explored methods for generating information about the type of
similarity that could be presented to the user. Discussions with users and analysis
of the collection revealed seven types of similarity:

1. Similar author/creator such as paintings by the same artist.

2. Similar people involved such as items showing the same people.

3. Similar time period such as items from the same year.

4. Similar location such as items showing the same place (e.g. a photograph
and painting of the White House).

5. Similar event or action involved such as items showing weddings, or peo-
ple eating ice cream.

6. Similar subject such as items related to the same subject, e.g. horses.

7. Similar description items which have a similar descriptions.

In addition, we also include a general similarity type where the annotators can
express their overall impression of the similarity between both items.

8http://ixa2.si.ehu.es/sts
9http://www.paths-project.eu
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5.3.2 Selecting item pairs
We have defined seven similarity types, and now we need to select items from Eu-
ropeana that represent theses types. Pairs of items were selected semi-automatically
from Europeana. 25 pairs of items were manually selected for each of the seven
similarity types (excluding general similarity), generating a total of 175 pairs. Af-
ter removing duplicates and cleaning the dataset, 163 of these pairs remained.
These manually selected pairs were then used as seeds to automatically select
new pairs. The Europeana API was used to identify items that were similar to
the seeds. For each seed, we created two chains of similar item pairs using an
iterative process. The first chain of pairs was obtained using the current seed and
a randomly chosen similar item from those provided by the Europeana API10. The
newly identified item was then used as a new seed to continue building the chain
of similar pairs. Thus, at each step, we obtained a new pair of similar items at
distance one. The second chain followed the same iterative process, but selecting
as new similar item among those appearing at distance two of the current seed in
the chain. For each chain, we repeated the process up to five times.

This process yields 1,500 pairs, the 163 that were manually selected, 892 from
distance one chains and 445 from distance two chains. We then divided the data
into training and testing sets containing 750 pairs each. The training data contains
82 manually selected pairs, 446 pairs from distance one chains and 222 pairs with
from distance two chains. The test data follows a similar distribution.

Table 5.1 shows descriptive statistics for the six fields provided to the partici-
pants (number of non-empty fields, average length of field in tokens and standard
deviation of field length). These statistics were computed from the 1500 items
(750 pairs) in the training portion of the dataset. A similar distribution was ob-
served for the test set.

5.3.3 Annotation
After selecting the pairs as seen in the previous section, the dataset was annotated
using CrowdFlower11, an online crowdsourcing platform. A survey was created
containing the 1,500 pairs of the dataset (750 for training and 750 for testing). A
set of 20 “gold” pairs with known answers were added for quality control12. Each
annotator was initially shown four gold questions at the beginning for training, and
then one gold question every two or four questions depending on the accuracy. If

10The Europeana API uses logs and textual descriptions to find similar items.
11http://www.crowdflower.com/
12The gold pairs were chosen from those pairs manually selected by the authors.
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Field Non-empty Avg. Length Std. Dev.
Title 1500 5.9 4.5
Creator 1049 3.6 2.3
Subject 1434 7.8 7.4
Description 1469 77.0 169.4
Date 295 1.4 0.5
Source 21 1.3 0.9

Table 5.1 – Corpus statistics for each of the fields in the training dataset.

the accuracy for a particular annotator dropped to less than 66.7% percent, the
survey was stopped and the answers for that annotator discarded. Each annotator
was allowed to rate a maximum of 20 pairs to avoid annotators becoming tired or
bored. To ensure quality, the task was restricted to annotators from a set of English
speaking countries: UK, USA, Australia, Canada and New Zealand. Each pair of
items included eight questions regarding different types of similarity (see below)
and was annotated at least by 5 annotators. A total of 1, 584 annotators took part
in the survey.

Figure 5.3 is a screenshot of the instructions provided to the annotators. Figure
5.4 shows how a a pair of items from the dataset is presented to the annotators.
Annotators were asked to rate the similarity between pairs of cultural heritage
items in the range 0 to 5. A Not Applicable option was also included to avoid an-
notators being forced to make a choice when they were unsure. In those cases the
similarity score was calculated using the values provided by the other annotators
(or 0 if there were no other annotators for a particular item).

5.3.4 Quality of annotation

To assess annotation quality, we compute the Pearson product-moment correlation
of each annotator against the average of the rest of the annotators, as in (Grieser
et al. 2011; Aletras et al. 2012). We then averaged all the correlations. This
measure is identical to the one used for evaluation (see Section 6.4) and can be
used to put those results into context. The inter-tagger correlation in the dataset
for each type of similarity shown in Table 5.2.

The correlation figures are high, with an average of 71.5, confirming that the
task was well designed. The weakest correlations are for the People Involved and
Event or Action types, suggesting they are the most difficult to identify. Other
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Figure 5.3 – Annotation instructions with explanations of each similarity type
given to the annotators on CrowdFlower.
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Figure 5.4 – Pair of items as shown in the survey to annotators. Only general and
author similarity types are displayed here. The annotators would see all types.

106



5.3. A DATASET FOR TYPED SIMILARITY

Similarity type Inter-tagger correlation
General 77.0%
Author 73.1%

People Involved 62.5%
Time Period 72.0%

Location 74.3%
Event or Action 63.9%

Subject 74.5%
Description 74.9%

Table 5.2 – Inter-tagger correlation scores for each type of similarity on the
Typed Similarity dataset.

annotations exercises which use a similar method to gather similarity annotations
report comparable figures for inter-tagger agreement (Agirre et al. 2012).

We also computed confusion matrices for each of the similarity types (see
Figure 5.5). The General, Subject and Description similarity fields (Figures 5.5a,
5.5g and 5.5h) show most of the weight in the 0-0 and 5-5 cells, indicating that
there is a lot of agreement between annotators when they judge pairs as 0 or as 5.
Almost all the disagreement is on 4-5 and 5-4 cells (i.e. very close disagreement).

The pattern is slightly different for the other similarity types (Figures 5.5b,
5.5c, 5.5d, 5.5e and 5.5f). In addition to the weight in the 0-0 and 5-5 cells there
is also a lot of weight in the 0-5 and 5-0 cells. To discover the reason for this
we manually examined a subset of the 0-5 and 5-0 disagreements. We found that
they were mainly caused by one of the annotators ignoring the information in the
description. A typical case would be two items with the same author where one of
the items did not have a dc:creator field, but which mentioned who the author
was in the description. The annotator who ignored the text in the description
would assign a pair 0, while the annotator who had read the description would
assign it a 5. Other than that we can conclude that annotators agree most of the
time. As in the previous case, the fine-grained disagreement is also concentrated
on the 4-5 and 5-4 cells for these similarity types.

Figures 5.6, 5.7 and 5.8 show the average score value distribution, as assigned
by the annotators, separated into five ranges. The majority of pairs are very closely
related with nearly half of the pairs in the [4-5] range. (The Event and People
Involved similarity types are exceptions which exhibit smoother distributions.)
The dataset is skewed towards higher similarity scores since our aim was to select
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(a) General (b) Author

(c) People involved (d) Time period

(e) Location (f) Event

(g) Subject (h) Description

Figure 5.5 – Confusion matrices for the eight similarity types.
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Figure 5.6 – Score value distribution, as assigned by annotators, for general,
author and people fields.

similar pairs of items rather than dissimilar ones.13

5.4 Discussion and analysis
We carried out an analysis of the annotations focussing on those pairs of items and
annotation types where the annotators disagreed most. For instance, in the case
of photographs (which form a substantial subset of the collection), there appears
to be some confusion about the target of the annotation, specifically in relation
to the Author similarity type. In these cases it is not clear whether the author
type refers to the photographer who took the photograph or the creator of the
item shown in the photograph (monument, building, painting, etc.). The same
thing also happened for other types like People Involved in photographic items.
Figure 5.9 shows an example of a pair of items where it is not clear if the annota-
tion refers to the object in the picture or to the photograph itself. The title fields
refer to sculptures of Buddha, but the creator fields refer to the photographers.
Descriptions provide more information, but they also contribute to improve the

13Pearson is known to have issues when distributions are skewed. We checked the inter-tagger
correlations using a down-sampled version of the full data, and the inter-tagger correlations we
obtained were slightly higher.
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Figure 5.7 – Score value distribution, as assigned by annotators, for general,
time period, location and event fields.

Figure 5.8 – Score value distribution, as assigned by annotators, for general,
subject and description fields.
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uncertainty on what we are evaluating, as they describe both sculptures and pho-
tographs.

Another source of disagreement is the poor quality of metadata. For in-
stance, the CREATOR field might contain the institution that keeps the item (e.g.
Fitzwilliam Museum), a generic term (e.g. staff) or even just none. Some anno-
tators assign the maximum score to cases where the term is the same for both
items, while others read the description of the items, which specifies the author
or indicates that it is unknown, and score the pair accordingly. Figure 5.10 shows
a pair of items where the metadata indicates staff as creators and the description
contains the actual author (designer) of both items (Sir Bernard de Gomme). One
of the annotators, seeing that the metadata was not useful, rated the author simi-
larity as Not Applicable (NA), while the rest did read the description and rated the
author similarity accordingly. Taking the average produced 4 as the final value in
the gold standard.

In another example (Figure 5.11) we can see the metadata for a pair of items,
photograph of (different) bridges. The creator field lists ’unknown’ in one case and
the author of the photograph in another (’Eric de Mare’ is a well-known British
photographer), but the description explicitly mentions the builders of each bridge:
’John Rennie’ for one, and his two sons, ’George’ and ’John’, for the other. The
scores provided by the annotators of the Author similarity is 2, 3, 3, 0 and 0. In
this case, it seems that the last two annotators have not read the full description of
the items, while the first three did recognise that the authors of both bridges are
related but not the same.

In order to explore the effect of incorrect or incomplete metadata on the an-
notation process we studied annotators’ behaviour while completing the task. We
enrolled some PhD students and asked them to annotate some of the conflicting
pairs. We directly observed the annotators as they completed the task and also
interviewed them after they had completed it. The study showed that the order of
the fields and questions effected the annotations. For instance, the annotators rated
the Author similarity before the Description similarity. In the absence of metadata
in the CREATOR field some of the students evaluated this similarity as 0, without
checking the description. They later identified the Author in the DESCRIPTION
field, but some tended not to alter the score that has already been assigned for Au-
thor similarity. This study suggests that annotators can be confused by incorrect
or incomplete metadata. For any future annotation exercises it would make sense
to control the order in which the metadata is presented to the annotators so that
the DESCRIPTION field is presented early (just after the title) since it provides the
most general description for the item in most cases.
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Figure 5.9 – Sample pair of items, where it is not clear whether the annotators
need to refer to the items in the photographs, or to the photographs themselves.
For each item, the contents of the fields in the metadata are shown. In the center
of the figure, the gold standard scores for each of the types is given.
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Figure 5.10 – Sample of a pair of items which contain poor metadata in the
author field (images removed for space). For each item, the contents of the fields
in the metadata are shown. In the center of the figure, the gold standard scores
for each of the types is given.

Overall our analysis suggests that although the quality of the annotation is
very good, it may also be possible to improve it further. For instance, clarifying
the photograph vs. item issue for the Author type and by providing specific in-
structions in face of poor quality metadata in order to pay more attention to the
text in the description.

5.5 Systems evaluation

This Section describes the results of typed similarity systems that participated in
the task. It presents the evaluation metrics used and the final results obtained using
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Figure 5.11 – Sample of a pair of items which contain contradictory authorship
information (images removed for space). For each item, the contents of the fields
in the metadata are shown. In the center of the figure, the gold standard scores
for each of the types is given.

the test data.

5.5.1 Evaluation metrics

System performance is evaluated by computing the Pearson product-moment cor-
relation between the scores returned by the systems and the gold standard values
(Rubenstein and Goodenough 1965), an approach often employed in word simi-
larity experiments. This correlation can be obtained for each type of similarity,
and the mean correlation score is the mean of the individual correlations.

114



5.5. SYSTEMS EVALUATION

5.5.2 The baseline system
The scores were produced using TF-IDF-based similarity (see Section 6.2.1) to
provide an indication of the performance that could be obtained using a simple
approach. This baseline system in described with more details in Section 6.3.2.

5.5.3 Results
This section describes the best Typed Similarity systems that participated in the
competition. Table 5.3 shows the results the baselines and for the best seven runs.
Each result is ordered by the rank of the system according to the mean of Pearson
correlations on each similarity type.
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Mean Rank
Unitor-SVR_rbf .798 .816 .692 .747 .772 .684 .788 .800 .762 1
Unitor-SVR_lin .756 .808 .676 .709 .735 .662 .752 .775 .734 2

UBC_UOS-3* .746 .666 .654 .741 .726 .655 .742 .776 .713 3
UBC_UOS-2 .746 .662 .652 .747 .724 .653 .740 .775 .712 4

ECNUCS-1 .604 .736 .366 .469 .384 .406 .523 .603 .511 5
UBC_UOS-1* .726 .457 .447 .576 .486 .309 .502 .581 .510 6

ECNUCS-2 .606 .568 .366 .469 .384 .406 .556 .603 .495 7
baseline* .669 .428 .446 .500 .484 .306 .502 .581 .489 8

Table 5.3 – Test results of participants on the 2013 *SEM shared task for each
type of similarity, including the mean, and the rank of each run according to
the mean. The systems marked with ’*’ are described in the next chapter: our
basic system is the baseline run, our improved system is UBC_UOS-RUN1 and
our machine learning system is UBC_UOS-RUN3. UBC_UOS-RUN2 was a
variation of the ML system with a manual selection of features.

The best system among participant was the one presented by (Croce et al.
2013), which uses an approach to combine Lexical Overlap (LO) scores with
Distributional Compositional Semantics (DCS) using Support Vector Regression
(SVR). Their first step is to select specific phrases from the items, based on lin-
guistic policies: word of specific Part-of-Speech (PoS), Named Entities (NE),
mentions to specific name classes, such as person, location, or date. Summa-
rizing, their selection is the following:
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• General: nouns, verbs and adjectives plus person, date and location enti-
ties from from dc:Title, dc:Subject and dc:Description fields, and all tokens
from dc:Creator, dc:Date and dc:Source fields.

• Author: all tokens from dc:Creator field and person entities from
dc:Description field.

• People involved: person entities from dc:Title, dc:Subject and
dc:Description fields.

• Time period: all tokens from dc:Date field and date entities from dc:Title,
dc:Subject and dc:Description fields.

• Location: location entities from dc:Title, dc:Subject and dc:Description
fields.

• Event: nouns and verbs from dc:Title, dc:Subject and dc:Description fields.

• Subject: nouns, verbs and adjectives from dc:Title and dc:Subject fields.

• Description: nouns, verbs and adjectives from dc:Description field.

To extract LO scores they lemmatize the selected phrases and then compute
the Jaccard similarity between the words in both sentences (WS1 and WS2) using
the following formula:

LO =
|WS1 ∩WS2|
|WS1 ∪WS2|

(5.1)

Additional DCS scores are obtained by accounting the syntactic composition
of the lexical information involved in the sentences. A basic lexical information
is obtained using co-occurrence values from a Word Space following (Sahlgren
2006). Each phrase is represented using an additive linear combination or SUM
operator. Then, the final score for each phrase is computed using cosine similarity
between the vectors.

A second function is obtained by applying a DCS operator following the ap-
proach described in (Croce et al. 2012). Using a parser they generate dependency
trees for the sentences and different triples (w1, w2, r) are generated, where w1

is the governor relation, w2 the dependent relation and r the grammatical type.
Inspired by (Jimenez et al. 2012) they compute the Soft Cardinality with the fol-
lowing formula:
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|S|′sim '
|T |∑
ti

(

|T |∑
tj

sim(ti, tj)
p)−1 (5.2)

where T = {t1, ..., tn} is a triple set, sim(ti, tj) is a similarity score between
triples and p is a parameter to control the softness of the cardinality. Higher Soft
Cardinality values mean that the elements are different, and lower values mean
that elements are very similar. Given triples sets A and B they estimate their final
score using a Syntactic Soft Cardinality (SSC) defined as follows:

SSC(A,B) =
2|A ∩B|
|A|+ |B|

(5.3)

Finally, they computed a convolutional kernel-based similarity score using a
Smoothed Partial Tree Kernel (SPTK) as proposed in (Croce et al. 2011). SPTK
allow to measure the similarity between syntactic tree structures.

To combine all these scores they used SVR using polynomial and Radial Basis
Function (RBF) kernels, and their best run was the one using RBF kernels.

5.6 Conclusions

This chapter introduced the new problem of typed similarity, determining the type
of the relation that holds between pairs of similar items. Typed similarity has vari-
ous applications including providing recommendations and improving exploration
through collections.

The problem was investigated within a subset of a large digital library of cul-
tural heritage items from Europeana in the framework of the PATHS project.
Seven types of similarity specific to this domain were identified: author, time,
location, involved people, events, subject and description. A dataset was created
using 1,500 pairs of items and annotated using crowdsourcing. It has been found
that some types of similarity are more difficult to identify than others, such as the
People Involved or Events or Actions represented in the items. In other cases, such
as with the Author, there is also some confusion when dealing with photographs
or paintings. However, an analysis of the annotation revealed an average Pearson
correlation of 71.5, this high inter-annotator agreement indicates that the task is
well-defined.

This work was done with the collaboration of Nikolaos Aletras and Mark
Stevenson, from the University of Sheffield, and have led to a publication in a
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journal.
In the next section we introduce several approaches to construct system that

can be able to automatically identify the types of similarity defined in this chapter.
We hope that these system could be used in Europeana to recommend similar
items (and paths) to the users.
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A System for Typed Similarity

In this section we introduce several approaches to automatically identify the type
of similarity, that has been used in a real-world application. We first explain how
the text in the items was processed, followed by descriptions of the three systems
we implemented, a baseline approach, a knowledge-based approach and a ma-
chine learning system. The high results obtained by our systems suggests that this
technology is close to practical applications.

The work presented in this and the previous chapter have led to a publication
in a journal.

6.1 Introduction

In the previous chapter we have presented a dataset for Typed Similarity. This
datasets contains 1500 pairs of Cultural Heritage items, divided in 750 pairs for
train and 750 for test. We found that the Second Joint Conference on Lexical
Computational Semantics (*SEM 2013) was the ideal framework to present the
Typed Similarity dataset.

STS was selected as the official shared task of the *SEM 2013 conference
(Agirre et al. 2013c). We decided to take advantage of this opportunity to hold
a pilot on Typed Similarity as a sub-task of STS, where the dataset was used to
support a community evaluation exercise. The main objective of the task is to
characterize the reason of why some item/element is similar to other. While STS
reduces the problem of judging similarity to a single number, Typed Similarity
measures the similarity by eight different numbers. For several applications it is
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important to characterize why or how items are similar, that is why we add more
distinct similarity scores.

The Typed Similarity dataset comprises pairs of Cultural Heritage items from
Europeana, a gateway to collections of cultural heritage items, including more
than 54 millions of sculptures, paintings, books, films, and other museum objects
that have been digitized throughout a wide range of European institutions. A
typical Europeana items contains meta-data describing a cultural heritage item
and (usually) an image of the item itself.

Participants in the task where asked to submit the output of their systems with
the eight similarity values between the items, computed employing all the infor-
mation provided by the items meta-data. In addition to general similarity, partici-
pants need to score the specific kinds of similarity, as the ones seen previously in
the Figure 5.3.

To demonstrate that the task was feasible we decided to participate as well.
We presented three systems, the first is a basic system that was used as the official
baseline of the task. The second system was a more advanced system that uses
knowledge bases to judge the different similarities. Finally, we submitted a third
system using the features of the previous two systems to feed a Machine Learning
(ML) system.

In the next section we describe the similarity metrics/methods we later used
on our systems. Section 6.3 describes in detail the three systems we submitted to
the task, including how we processed the items. Section 6.4 described the official
evaluation metrics of the task, presents the results of our system (including an
error analysis), and compares the best systems that participated. Finally, Section
6.5 draws some conclusions.

6.2 Similarity methods

In this section we present the methods used for computing similarity and to build
the typed-similarity systems described in the next section. Those tools are Bag-of-
Words similarity using TF-IDF (Section 6.2.1), LDA (Section 6.2.2), the Wikipedia
Link Vector Model (Section 6.2.3) and random walks over WordNet and Wikipedia
graphs (Section 6.2.4). Each of these methods provide a different technique that
can be applied to compute the similarity between a pair of texts.

LDA and WLVM scores were computed by Nikolaos Aletras, from the Uni-
versity of Sheffield, but we describe them here for completeness.
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6.2.1 TF-IDF

A common approach for computing similarity between texts is to represent the
documents as a Bag-Of-Words (BOW). Each BOW is a vector consisting of the
words contained in the document in which each dimension corresponds to a word
and the weight is the frequency with which the word occurs within the document.
The similarity between two documents can be computed as the cosine of the angle
between their vectors. If two documents are identical the cosine value of their
vectors is 1 while if they share no common terms the cosine value is 0.

This approach is usually improved by giving more weight to words which
occur in few documents and less weight to common words which tend to occur
in many documents (e.g. the). We used the Inverse Document Frequency (IDF)
(Baeza-Yates and Ribeiro-Neto 1999) using counts from the Culture Grid collec-
tion1 in order to weight words. Thus, the TF-IDF similarity between items a and
b is defined as follows:

simtf-idf(a, b) = (6.1)∑
w∈a,b tfw,a × tfw,b × idf2w√∑

w∈a(tfw,a × idfw)2 ×
√∑

w∈b(tfw,b × idfw)2
(6.2)

where tfw,x is the frequency of the term w in x ∈ {a, b} and idfw is the inverted
document frequency of the word w.

6.2.2 LDA

Latent Dirichlet Allocation (LDA) (Blei et al. 2003) is a statistical method that
learns a set of latent variables, called topics, describing the contents of a document
collection. Given a topic model, documents can be viewed as a set of probabil-
ity distributions over topics, θ. The distribution for an individual document i is
denoted as θi.

The similarity between a pair of texts is estimated by comparing their topic
distributions (Aletras et al. 2012; Aletras and Stevenson 2012). This is achieved
by considering each distribution as a vector (consisting of the topics corresponding
to an item and its probability) then computing the cosine of the angle between

1Culture Grid (http://www.culturegrid.org.uk/) is the digital content provider
service from the Collection Trust and forms part of Europeana. It contains information about over
one million items.
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them, i.e.

simLDA(a, b) =
~θa · ~θb
|~θa| × | ~θb|

(6.3)

where ~θx is the vector created from the probability distribution generated by
LDA for text x.

To implement this approach an LDA model consisting of 100 topics was
trained using the gensim package2 with hyperparameters (α, β) were set to
1/num_of_topics.

6.2.3 WLVM
An algorithm described by (Milne and Witten 2008) associates Wikipedia articles
with a document using machine learning techniques. We make use of that method
to represent each item as a set of Wikipedia articles. The similarity of two docu-
ments can be thus computed as a function of the similarity between the Wikipedia
articles associated with each text. We measured the similarity between Wikipedia
articles using the Wikipedia Link Vector Model (WLVM) (Milne 2007), which
uses both the link structure and the article titles. Each link is weighted by the
probability of its occurrence. Thus, the value of the weight w for a link x → y
between articles x and y is:

w(x→ y) = |x→ y| × log

(
t∑

z=1

t

z → y

)
(6.4)

where t is the total number of articles in Wikipedia. The similarity of articles
is compared by forming vectors of the articles which are linked from them and
computing the cosine of their angle. For example the vectors of two articles x and
y are:

x = (w(x→ l1), w(x→ l2), ..., w(x→ ln)) (6.5)
y = (w(y → l1), w(y → l2), ..., w(y → ln)) (6.6)

where x and y are two Wikipedia articles and x → li is a link from article x to
article li.

The similarity between two documents can then be computed by performing

2http://pypi.python.org/pypi/gensim
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pairwise comparison between the corresponding articles using WLVM, selecting
the highest similarity score for each, as follows:

sim(a, b) =
1

2

(∑
w1∈a arg maxw2∈bWLVM(w1, w2)

|a|

+

∑
w2∈b arg maxw1∈aWLVM(w2, w1)

|b|

)
(6.7)

where a and b are two texts, |a| the number of Wikipedia articles in a and
WLVM(w1, w2) is the WLVM similarity between articles w1 and w2.

6.2.4 Random walks

Random walks have been successfully used to compute the similarity between
words (Agirre et al. 2010) and we extended these techniques to compute simi-
larity between documents. We used the semantic disambiguation and similarity
algorithm UKB3 (Agirre and Soroa 2009), which applies personalized PageRank
on a graph generated from the English WordNet (Christiane Fellbaum 1998), or
alternatively, from Wikipedia.

To compute similarity between two words using UKB, we first represent Word-
Net as a graph G = (V,E): graph nodes represent WordNet concepts (synsets)
and dictionary words; relations among synsets are represented by undirected edges;
and dictionary words are linked to the synsets associated to them by directed
edges. We used the graph provided by UBK package. We then compute the per-
sonalized PageRank over WordNet separately for each of the words, producing
two vectors with the probability distribution over WordNet synsets. The similar-
ity between the words can be computed as the cosine between the two probability
distributions.

The similarity between two documents can be computed initializing the ran-
dom walks using the words in the respective texts to obtain a vector of probability
distribution over synsets, and computing the cosine.

In addition to WordNet, we also used the Wikipedia graph, where the nodes
correspond to Wikipedia articles, and the edges to hyperlinks between articles.
We used version 3.0 of WordNet and the publicly available dump of Wikipedia
dated 25th of May of 2011.

3http://ixa2.si.ehu.es/ukb/
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6.3 Constructing systems
In this section we present the three systems that were submitted to the Typed Sim-
ilarity subtask of *SEM 2013. The first system is a basic system that was designed
to be used as the official baseline of the task. The second system is a knowledge-
based approach, substituting some of the eight similarity scores assigned by the
basic system. The third system uses the features of the previous two systems to
feed a ML system.

6.3.1 Processing text in the items
The text in metadata the items was pre-processed using Stanford CoreNLP (Finkel
et al. 2005; Toutanova et al. 2003), including tokenization, Part-of-Speech tag-
ging, Named Entity Recognition and Classification (NERC) and date detection.
The NERC module is key, as it allowed as to detect people, locations, organiza-
tions and dates. We used this entities on different ways, depending on the similar-
ity type we were judging.

6.3.2 Baseline system
We implemented a baseline system using only TF-IDF-based similarity (see Sec-
tion 6.2.1) to provide an indication of the performance that could be obtained
using a simple approach. TF-IDF was applied differently for each similarity type:

• General: cosine similarity of TF-IDF vectors created using tokens from all
fields.

• Author: cosine similarity of TF-IDF vectors created using dc:Creator field.

• People Involved, Time Period and Location: cosine similarity of TF-IDF
vectors created from people, locations and date expressions recognized by
NERC in all fields. Figure 6.1 shows a sample of the people, locations
and dates which were automatically detected in the metadata for the item in
Figure 5.2.

• Events: cosine similarity of TF-IDF vectors constructed from verbs in all
fields.

• Subject and Description: cosine similarity of TF-IDF vectors created from
respective fields.
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<entity netype="ORG" lemma="Fitzwilliam_Museum" field="dc:creator"/>

<entity netype="LOC" lemma="Cambridge" field="dc:creator"/>

<entity netype="LOC" lemma="UK" field="dc:creator"/>

<entity netype="LOC" lemma="Victoria" field="dc:subject"/>

<entity netype="DATE" lemma="1837-1901" field="dc:subject"/>

<entity netype="LOC" lemma="Victoria" field="dc:description"/>

<entity netype="DATE" lemma="1837-1901" field="dc:description"/>

<entity netype="LOC" lemma="Great_Britain" field="dc:description"/>

<entity netype="DATE" lemma="1837-1901" field="dc:description"/>

<entity netype="DATE" lemma="1887_-_1901" field="dc:description"/>

<entity netype="PER" lemma="Withers" field="dc:description"/>

<entity netype="PER" lemma="Paul" field="dc:description"/>

<entity netype="DATE" lemma="2003-11-25" field="dc:description"/>

Figure 6.1 – Example of NER analysis on the item shown in Figure 5.2

6.3.3 Knowledge based approach
The second approach was built on the baseline to make use of information from
Wikipedia and WordNet (Section 6.2.4). Rather than applying TF-IDF similarity
to all fields, as the baseline system did, different processes were applied to each
field:

• Author: similarity using random walks on Wikipedia for the person entities
in the dc:Creator field.

• People Involved: similarity using random walks on Wikipedia for the per-
son entities recognized by NERC in all fields.

• Location: similarity using random walks on Wikipedia for the location en-
tities recognized by NERC in all fields.

• Events: similarity using random walks on WordNet for event verbs and
nouns in all fields. A list of verbs and nouns that may denote events was
derived using morphosemantic links in WordNet4.

4http://wordnetcode.princeton.edu/standoff-files/
morphosemantic-links.xls
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Results on the training data showed that the coverage of random walks for the
aforementioned fields was quite low (except for event similarity, where good per-
formance was obtained). This was caused by the large number of cases where the
Stanford parser did not find entities which were in Wikipedia. Consequently the
scored returned by the random walks were combined with the TF-IDF similarity
scores presented in Section 6.3.2 as follows: if UKB similarity returns a score
then it is multiplied with the TF-IDF score, otherwise we return the square of the
TF-IDF similarity score.

In addition, the general similarity was improved in two ways: lemmas were
used instead of word forms and Wikipedia was used to compute IDF scores instead
of the Culture Grid collection. (We found that using Culture Grid lead to some
undesirable outcomes, e.g. the word ’coin’ had a very low IDF because it occurs
very frequently in the CultureGrid collection.)

Finally, a dedicated similarity measure for dates was devised, in order to model
that, e.g. 1500 and 1550 are similar dates while 99 and 1999 are not. To measure
the time similarity between a pair of items we first need to identify the time ex-
pressions contained in both items. We assume that the year of creation or the year
denoting when the event referenced by an item took place are good indicators of
temporal similarity. Information about years mentioned in each item’s meta-data
is extracted using the following pattern: [1|2][0−9]{3}. Using this approach, each
item is represented as a set of numbers denoting the years extracted from the item.

Time similarity between two items is computed based on the similarity be-
tween their associated years. Similarity between two years is defined as:

simyear(y1, y2) = max{0, 1− |y1− y2| ∗ k} (6.8)

where k is a parameter to weight the difference between two years, e.g. for
k = 0.1 all items that have difference of 10 years or more are assigned a score of
0. We experimented with various values for K and obtained the best results for
k = 0.1.

Finally, time similarity between items a and b is computed as the maximum of
the pairwise similarity between their associated years:

simtime(a, b) = max
∀i∈a,∀j∈b

{0, simyear(ai, bj)} (6.9)

The, we substituted the preliminary Time similarity score of the baseline sys-
tem by the measure obtained using the method presented in this section.
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6.3.4 Machine learning system
The systems described so far used dedicated similarity measures to model each
similarity type separately. In some cases, we are able to provide more than one
option for each type of similarity. The machine learning system takes each of
those similarity measures as features and uses linear regression (from Weka (Hall
et al. 2009)) to learn models that fit those features to the training data.

To evaluate the general similarity, in addition to the TF-IDF cosine similarity
used in the previous two systems, we used further similarity scores as features
for general similarity, including LDA (Section 6.2.2) and WLVM (Section 6.2.3).
We also used random walks (Section 6.2.4) to generate a probability distribution
over WordNet synsets for all of the words in each item. Similarity between two
words is computed by creating vectors from these distributions and comparing
them using the cosine of the angle between the two vectors. If a words does not
appear in WordNet its similarity value to every other word is set to 0.

Then, the similarity between a pair of items is computed by performing pair-
wise comparison between the words they contain and selecting the highest sim-
ilarity score. The approach is similar to the one used to identify the similarity
between a pair of texts based on their WLVM scored described in Section 6.2.3.

6.4 Evaluation
This section describes the evaluation of the typed similarity systems described
previously. It presents the results obtained during the train and development phase
(using the training portion of the dataset) and the final results obtained using the
test data. Results are compared against state of the art systems. Note that we
follow the same partition of training and test data that was used in the *SEM 2013
shared task (see Section 6.4.3) making the results directly comparable.

6.4.1 Train and Development
The training data was used to develop the systems and check performance. Results
for the machine learning system were generated using 10-fold cross-validation.

Table 6.1 shows the results obtained using the baseline system and improved
components from the knowledge based system for each of the similarity types,
including the improvement over the baseline. The differences in this table (the row
with heading ’∆ Baseline’) are multiplied by 100, to appreciate them better. The
results show that the use of Wikipedia counts when computing TF-IDF improve
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the results of general similarity, and yield the best results overall, with 6 absolute
points of improvement over the baseline.

Type Feature Results ∆ Baseline
General Baseline 0.658 -

LDA 0.680 +2.2
TF-IDFWiki 0.727 +6.9

UKBWiki 0.541 -11.7
WLVM 0.561 -9.7

Author Baseline 0.396 -
UKBWiki 0.272 -12.4

Combined UKBWiki 0.447 +5.1
People involved Baseline 0.474 -

UKBWiki 0.297 -17.7
Combined UKBWiki 0.465 -0.9

Location Baseline 0.472 -
UKBWiki 0.222 -25.0

Combined UKBWiki 0.480 +0.8
Time Baseline 0.548 -

Improved Time Measure 0.588 +4.0
Event Baseline 0.264 -

UKBWN 0.285 +2.1
Combined UKBWN 0.283 +1.8

Subject Baseline 0.498 -
Description Baseline 0.539 -

Table 6.1 – Development results on each similarity type for the Baseline ap-
proach (TF-IDF) and the improved components applied in the knowledge based
approach (cf. Sections 6.3.2 and 6.3.3). The differences in this table (the row
with heading ’∆ Baseline’) are multiplied by 100, to appreciate them better.

The use of random walks over Wikipedia (UKBWiki) leads to results that are
worse than the baseline approach, unless both scores are combined. (The com-
bined score was obtained by multiplying the individual scores. If one of the algo-
rithms did not yield a score, we squared the score of the other algorithm.) When
a combination is used results improve for Author and Location, but not for Peo-
ple Involved. The use of random walks over WordNet (UKBWN ) for events does
improve over the baseline, without need of combination.
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The dedicated time similarity measure also improves the results over the base-
line. Note that we did not experiment with any improvements for the subject and
description fields given the strong results generated by the baseline system.

The results of the full systems on each individual type in the training data
are shown on Table 6.2, together with the mean score across all types. The ta-
ble shows that the Baseline system (Baseline) obtains the lowest results, with the
knowledge based system (Knowledge) getting better results overall and for most
types (except for People Involved). Using a Linear regression (ML system) im-
proves the results considerably for all types, yielding a mean value of 73.9. Values
over 65 are obtained for all types, a values that is usually taken to mean a strong
association.
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Mean
Baseline .658 .396 .474 .548 .472 .264 .498 .539 .481

Knowledge .727 .447 .465 .588 .480 .285 .497 .539 .503
ML system .787 .694 .697 .765 .749 .655 .759 .807 .739

Table 6.2 – Development results of each system for each type of similarity, in-
cluding the mean over all types.

6.4.2 Test

Table 6.3 shows the results of our systems in the test dataset. The results are very
similar to those obtained on the training data, but in this case the Knowledge
based system performs better or equal to the baseline system in all types. The
Machine Learning system provides the best results by far for all types, with
correlations over 65 in all cases. The difference between the knowledge based
system and baseline is not statistically significant, but the difference between the
Machine Learning and knowledge based systems is (p-value < 0.02).

The high correlations obtained by our machine leaning system suggest that
deploying automatic systems for typed-similarity in real tasks is feasible. In fact,
the correlations attained by our best system (see Table 6.3) are comparable to the
inter-tagger correlations obtained during annotation (see Section 5.3.4).
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Mean Rank
Baseline .669 .428 .446 .500 .484 .306 .502 .581 .489 8

Knowledge .726 .457 .447 .576 .486 .309 .502 .581 .510 6
ML system .746 .666 .654 .741 .726 .655 .742 .776 .713 3

Table 6.3 – Test results of each system for each type of similarity, including the
mean over all types and the rank of the systems among all participants.

Error Analysis

In this section we perform an analysis of errors of our best system, the ML system.
We first check the absolute difference between the Gold Standard (GS) and the
value assigned by our system for each type of similarity. Table 6.4 shows the total
numbers of pairs in the test data with an absolute error higher than 4, 3 or 2.
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> 4 0 0 0 0 0 0 0 0
> 3 1 13 8 2 4 5 4 0
> 2 47 77 52 44 64 41 52 34

Table 6.4 – Number of pairs with and absolute error, abs(GS −MLsystem),
higher than 4, 3 or 2, on the Typed Similarity Test set (750 pairs). There were
no errors over 4. Most of the errors over 3 concentrate on Author and People
Involved, but errors over 2 are spread across all types.

Hand inspection reveals that errors related to the General similarity occur
mainly when there is very low information, or when one of the items has a descrip-
tion much longer than the other. In these cases what happens is that the images
provide the missing information, usually being very similar between them. In the
case of the Author similarity, the worst errors occur when there is no metadata in
the field, and authorship is indicated in the description. Using a pattern that looks
for people entities after the word ’author’ or ’creator’ would be useful to solve
this issue. Another source is the parser, when it does not detect the author as a
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person. Errors in the People Involved similarity occur when the parser identifies
as people references to locations (places with the name of people). The annotators
are able to recognize this fact, but the system does not. The Time Period similar-
ity have problems when it is implicit in historical facts, like ’World War II’. It also
happens if ’nineteenth-century’ (or similar references) are used, instead of ’19th
century’. With Location similarity the main issue is similar to what happens with
general similarity, failing when the metadata have different lengths. If an item has
more mentions to places than the other, the system fails, even if it is clear for the
annotators that the location of both items is the same.

As for Event similarity, the errors occur when the main event is diluted with
other secondary actions. For example, in the pair 17 of the test set, the main event
of both items is a ’car accident’:

• Publicity photograph showing a severely damaged crashed car, no doubt
the result of drink driving; ’give way’ sign in background

• 22nd February, 1967 Car crash on a one way street after a 70mph chase.
Several cars can be seen with police and members of the public gathered
round. The stolen car had been chased along the inner ring road and the
driver was arrested in Wade Lane

However, the causes are different: in one, the accident is caused by a drunk
driver, and in the other it is a consequence of someone being pursued by police
after having stolen a car. In addition, as in previous examples, the longer definition
dilutes the main event.

The errors in Subject similarity usually occur when both fields mean the same,
but they are written in a different way, or when a field is empty and the annota-
tors base their decision on the image. In the case of Description similarity, when
descriptions are of very different length the system tends to score lower than the
annotators. The opposite occurs when the descriptions are cryptic, difficult to un-
derstand, or give technical information about the item, as the following example,
where the annotators assign a 0, but the system assigns a 2.82:

• Poster, London & North Eastern Railway, ’Cleethorpes’ by Andrew John-
son, printed by Waterlow & Sons Ltd., London & Dunstable. 1930. With
bathers on the beach with a donkey ride and sea in the background. Format:
quad royal. Dimensions: 40 x 50 inches, 1016 x 1270 mm.

• BR(LMR) Poster: Go abroad to the Isle of Man. Port St. Mary. Boats in
Bay. Houses in background, by artist Peter Collins, printed by Waterlow
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and Sons Ltd., London and Dunstable. Format: quad royal. Dimensions:
40 x 50 inches, 1016 x 1270mm.

6.4.3 Comparison to the best system
The Baseline system was used as the overall task baseline against which all runs
were compared. This baseline system actually outperformed many of the submit-
ted systems for various similarity types and achieved an overall ranking of 8th out
of the 14 submitted systems.

The Knowledge based system was ranked in 6th place overall and the Ma-
chine Learning system in 3rd place. Our systems achieved good correlation
scores for almost all similarity types, with the exception of Author similarity,
which is the worst ranked in comparison with the rest of the systems.

The best system (Croce et al. 2013) applied an approach that combined Sup-
port Vector Regression (SVR) with compositional distributional semantics to achieve
an overall mean score of 0.762 across all similarity types. Full results are shown
in Table 5.3.

6.5 Conclusion and Future Work
This chapter introduces three approaches to automatically determine the similarity
type between cultural heritage items. The simplest approach was used as the
official baseline of the Typed Similarity task, a community evaluation exercise
within the *SEM 2013 shared task on Semantic Textual Similarity (Agirre et al.
2013c). The exercise attracted 14 system runs from 6 teams. The baseline system
was improved using knowledge-based and machine learning approaches. Our best
results were obtained using the machine learning system which employed linear
regression. This approach yields a mean Pearson correlation of 71.3, close to the
human performance for this task.

The typed similarity systems presented here have been deployed in PATHS
within a prototype exploratory search interface for Europeana (Agirre et al. 2013a).
When users view an individual Europeana item in this system they are also shown
up to 25 similar items together with the similarity type to provide a motivation for
displaying particular items. The type of the similarity is determined automatically
using the machine learning system. A screenshot of this real-world application is
shown in Figure 6.2, where for an item representing a ’McLaren Steam Engine’
the system suggests three possible paths based on general, subject, and descrip-
tion similarity. We carried out further evaluation of this application to determine
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Figure 6.2 – Screenshot of the real recommender system, based on the system
presented in this chapter, being used in Europena to suggest paths to users.

how useful users find this information. A total of 88% of participant in this study
responded that they found related items and path suggestions ’Very Useful’ (35%)
or ’Useful’ (53%). We also asked participant to evaluate the usefulness of the dif-
ferent similarity types. Over 40% of participants responded that similar Subject
was ’Very Useful’, and over 85% responded that if was ’Very Useful’ or ’Useful’.
After similar Subject, the most popular similarity types were People Involved, Lo-
cation and Time Period, in this order. Author similarity was the less popular for
participant, although over 60% of them found it ’Very Useful’ or ’Useful’. Full
results of this study are shown in Figure 6.3.

These systems were constructed as a first approximation to the typed similar-
ity problem. Although we obtained good results with them, we recognize that this
system can be improved using more sophisticated techniques, such as the cube
system presented in Chapter 4. Furthermore, for these system we only used the
textual information contained in the metadata. More recent works have demon-
strated that neural networks can be used to measure the similarity between images
(Wang et al. 2014). These neural networks were not common when we released
the Typed Similarity dataset, and the images were used only as a guidance for
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Figure 6.3 – Evaluation of the usefulness of the different similarity types. Sim-
ilar event was left out of this study because it was not relevant enough in most
items.

the annotators. It would interesting to incorporate the knowledge provided by the
thumbnails to the typed similarity systems.

In the future, we would like to explore the typed similarity problem in other
domains, where a different set of similarity types are likely to be relevant.

This work was done with the collaboration of Nikolaos Aletras and Mark
Stevenson, from the University of Sheffield, and have led to a publication in a
journal.

134



7
Conclusions and future work

This chapter presents a summary (Section 7.1) of the goals and contributions of
this research on Semantic Textual Similariy. In Section 7.2 we list the publications
that are related to this thesis. Finally, Section 7.3 proposes new lines of research.

7.1 Summary
Teaching computers to communicate through language is a real challenge. Lan-
guage is full of phenomena that make comprehension very complex (e.g. poly-
semy, sarcasm, jokes, etc). In recent years there has been much progress in the
field of NLP. In spite of this, we are still far from a complete Natural Language
Understanding (NLU).

This thesis focuses on an aspect of NLU that attracts great interest, the evalua-
tion of the semantic similarity. Evaluating whether two text fragments are similar
to each other is a very important part in the field of semantics and NLP, and is
useful for multiple tasks, such as Machine Translation, Question Answering or
Plagiarism detection. Meaning equivalence measures can also be used to evaluate
voice commands and understand the will of the user. This is specially useful for
elder people, who has usually more difficulties using computers and other modern
technologies, but also for home automation system to turn on the television or the
home stereo system. Advanced systems could also understand that the command
’Buy me a flight to London or nearby’ means ’Buy me a the cheapest plane ticket
to London or to other surrounding airports’.

The main objectives of this thesis were to define tasks for the evaluation of
semantic similarity, the creation of systems capable of assigning scores for se-
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mantic similarity and creating datasets with which evaluate these systems. These
three objectives have been completely fulfilled during the development of this the-
sis. We have defined two task for semantic similarity, Semantic Textual Similarity
(STS) and Typed Similarity, and we have provided two highly competitive systems
for each of the tasks. The datasets used to evaluate these systems where created
in the scope of this research, and are widely used by other researchers, including
to evaluate sentence representations generated using neural networks.

The first contribution of this work is to carry out a thorough review of the state
of the art, starting with the concept of similarity in itself. We have reviewed the
most common methods and techniques to compute semantic similarity, as well as
the datasets that were available before the arrival of this thesis. Current systems
and methods are data hungry, needing a lot of them to train their models. That is
why the created datasets are of vital importance.

In this research we present STS and Typed Similarity, two tasks to evaluate the
similarity between snippets of text and cultural heritage items, respectively. The
first one aims to asses a graded similarity score between texts, while the second
aims to explore different types of similarity, explaining how an item is similar to
another. We have described the processes to define both tasks, and analysed the
main problems that arose. We detail how the datasets were created, and how they
were annotated, as well as all post-processes that helped to improve the quality
of annotations. Inter-tagger agreement values demonstrate the high quality of
datasets, and is the main reason of why they are so widely used by researchers
all around the world. Semantic similarity has come a long way forward in this
time: when the work presented in this thesis began, there were no datasets that
would serve to train STS systems, it was not even clear how to carry out the task,
nor how to evaluate the systems. Nowadays, there is great acceptance on the
decisions taken in the definition of STS.

The work presented in this research includes the creation and annotation of 25
datasets for STS, which make a total of 15,436 pairs of sentences. This makes
them the largest collection of data for STS. The quality of the annotations has
been improved gradually each year, rising from an average inter-tagger of ap-
proximately 70% in 2012 to an approximately 83% in 2015. Created datasets are
widely used, not only to evaluate STS systems, but also to evaluate the quality of
sentence representations and other resources: several researchers are competing
aiming to generate the best sentence representations or vectors, and they are using
the datasets for STS to evaluate the quality of their embeddings. Recently, this
area has become very popular, and there is great competition to achieve the best
results on STS datasets using neural networks.
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The dataset for Typed Similarity comprises 1,500 pairs of items from a Cul-
tural Heritage collection, divided in 750 pairs for train and 750 for test. The
annotation quality of the dataset is high, with an average of 71.5% Pearson corre-
lation, confirming that the task was well designed. The weakest correlations are
for the People Involved and Event or Action types, suggesting they are the most
difficult to identify, but in any case, the lowest correlation are above 62.5%.

This thesis also presents two competitive systems, one for STS and other
for Typed Similarity. The motivation behind the construction of the system for
STS was to demonstrate that it is possible to use a new approach to combine
knowledge-based methods with corpus-based methods without using Machine
Learning (ML). Knowledge-based methods include knowledge from WordNet
and Wikipedia, and corpus-based knowledge include two types of word vectors
and three measures from clustering. Together with an heuristics metric for num-
bers, this information is used to construct a cube with all the knowledge, where
each layer is a matrix with similarity scores from the different resources. An ad-
vantage of this system is that all knowledge is available at all times. No piece of
information is discarded at any time, and is available for any algorithm until the
final step, when the STS score is assigned. The system succeeds in extracting a
result comparable to that obtained using ML on the sources of knowledge stored
in the cube. Moreover, generating different features from the sentences and com-
bining them with our system using ML makes it comparable to the best systems
for STS. The system is also very robust and stable according to the ablation test
performed, where resources were removed from the cube to measure their impact
in the performance. It is important to note that this system does not combine with
any other system to improve the results. For instance, it is very common to use the
output of several state-of-the-art systems to feed a Linear Regressor or a Support
Vector Regressor. Our system is an stand-alone system, which is not supported
by another independent system. A preliminary version of this system was used
in a system for Interpretable STS (Agirre et al. 2015b), and the similarity scores
provided by this preliminary cube were the best among all submitted systems.

The objective for the Typed Similarity system was to demonstrate that the
task was feasible. The system combines TF-IDF similarity, Latent Dirichlet Allo-
cation, Wikipedia Link Vector Model, Random Walks on WordNet and Wikipedia
and other heuristic metrics using ML. It works at a high level, close to inter-tagger
agreement values, and thanks to its performance, it was possible to use it to rec-
ommend paths to users who visit an online museum (extensible to other similar
platforms). A study on the usefulness of the similar items suggested by this sys-
tems showed that over 88% of the users that participated on the study evaluated
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the system for Typed Similarity as useful or very useful. This system can be easily
applied to other domains where it is useful to recommend products based on dif-
ferent types of similarity, such as online shopping platforms (e.g. Amazon, Ebay,
Kiabi).

7.2 Publications
This section summarizes the main publications, organized by chapter, related to
this thesis. Some of the publications have been made in collaboration with other
people, and the authors are listed in alphabetical order. Unless explicitly indi-
cated, the substantial part of the work presented in this thesis was done by me.

Chapter 3:

1Agirre E., Banea C., Cer D.M., Diab M.T., Gonzalez-Agirre A., Mihalcea R.,
Rigau G., and Wiebe J. Semeval-2016 task 1: Semantic textual similarity, mono-
lingual and cross-lingual evaluation. In Bethard S., Cer D.M., Carpuat M., Jurgens
D., Nakov P., and Zesch T., editors, SemEval@NAACL-HLT, 497–511. The Asso-
ciation for Computer Linguistics, 2016a. ISBN 978-1-941643-95-2

1Agirre E., Banea C., Cardie C., Cer D., Diab M., Gonzalez-Agirre A., Guo W.,
Lopez-Gazpio I., Maritxalar M., Mihalcea R., Rigau G., Uria L., and Wiebe J.
SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on
Interpretability. Proceedings of the 9th International Workshop on Semantic Eval-
uation (SemEval 2015), Denver, CO, June 2015a. Association for Computational
Linguistics

1Agirre E., Banea C., Cardie C., Cer D., Diab M., Gonzalez-Agirre A., Guo W.,
Mihalcea R., Rigau G., and Wiebe J. SemEval-2014 Task 10: Multilingual seman-
tic textual similarity. Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), 81–91, Dublin, Ireland, August 2014. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/
S14-2010

1Agirre E., Cer D., Diab M., Gonzalez-Agirre A., and Guo W. *SEM 2013
shared task: Semantic Textual Similarity. Second Joint Conference on Lexical

1Authors in alphabetical order
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and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Con-
ference and the Shared Task: Semantic Textual Similarity, 32–43, Atlanta, Geor-
gia, USA, June 2013c. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/S13-1004

1Agirre E., Cer D., Diab M., and Gonzalez-Agirre A. Semeval-2012 task 6: A
pilot on semantic textual similarity. *SEM 2012: The First Joint Conference
on Lexical and Computational Semantics – Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceedings of the Sixth Inter-
national Workshop on Semantic Evaluation (SemEval 2012), 385–393, Montréal,
Canada, 7-8 June 2012. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/S12-1051

Chapter 4:

Gonzalez-Agirre A., Agirre E., and Rigau G. Cubes for STS: Combining Knowledge-
based and Corpus-based similarity. TBS, In preparation

1Agirre E., Gonzalez-Agirre A., Lopez-Gazpio I., Maritxalar M., Rigau G., and
Uria L. UBC: Cubes for English Semantic Textual Similarity and Supervised Ap-
proaches for Interpretable STS. Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015: Task 2), Denver, CO, June 2015b. Asso-
ciation for Computational Linguistics

Chapter 5:

Gonzalez-Agirre A., Aletras N., Rigau G., Stevenson M., and Agirre E. Why are
these similar? Investigating item similarity types in a large Digital Library. Jour-
nal of the Association for Information Science and Technology (JASIST), 67:7 pp.
1624-1638. John Wiley & sons. ISSN: 2330-1643. DOI: 10.1002/asi.23482, 2016

1Agirre E., Cer D., Diab M., Gonzalez-Agirre A., and Guo W. *SEM 2013
shared task: Semantic Textual Similarity. Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Con-
ference and the Shared Task: Semantic Textual Similarity, 32–43, Atlanta, Geor-
gia, USA, June 2013c. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/S13-1004
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Chapter 6:

Gonzalez-Agirre A., Aletras N., Rigau G., Stevenson M., and Agirre E. Why are
these similar? Investigating item similarity types in a large Digital Library. Jour-
nal of the Association for Information Science and Technology (JASIST), 67:7 pp.
1624-1638. John Wiley & sons. ISSN: 2330-1643. DOI: 10.1002/asi.23482, 2016

1Agirre E., Aletras N., Gonzalez-Agirre A., Rigau G., and Stevenson M. UBC
UOS-TYPED: Regression for typed-similarity. The Second Joint Conference on
Lexical and Computational Semantics (*SEM 2013) pages 132-137 ISBN 978-1-
937284-48-0, 2013b

Other publications related to this thesis are listed below:

Lopez-Gazpio I., Maritxalar M., Gonzalez-Agirre A., Rigau G., Uria L., and Agirre
E. Interpretable semantic textual similarity: Finding and explaining differences
between sentences. Knowl.-Based Syst., 119:186–199, 2017. URL http://
dx.doi.org/10.1016/j.knosys.2016.12.013

1Agirre E., Gonzalez-Agirre A., Lopez-Gazpio I., Maritxalar M., Rigau G., and
Uria L. Semeval-2016 task 2: Interpretable semantic textual similarity. Proceed-
ings of the 10th International Workshop on Semantic Evaluation (SemEval 2016),
2016b

Gonzalez-Agirre A. and Rigau G. Construcción de una base de conocimiento
léxico multilingüe de amplia cobertura: Multilingual Central Repository. Revista
para o Processamento Automático das Línguas Ibéricas (Linguamática). ISSN:
1647-0818. Vol. 5, Número 1. Pages: 13-28., 2013

Gonzalez-Agirre A., Laparra E., and Rigau G. Multilingual Central Repository
version 3.0. 8th international conference on Language Resources and Evaluation
(LREC’12) ISBN 978-2-9517408-7-7, 2012c

Gonzalez-Agirre A., Laparra E., and Rigau G. Multilingual Central Repository
version 3.0: upgrading a very large lexical knowledge base. Proceedings of the
6th Global WordNet Conference (GWC’12) ISBN 978-80-263-0244-5., 2012d
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Gonzalez-Agirre A., Castillo M., and Rigau G. A proposal for improving WordNet
Domains. 8th international conference on Language Resources and Evaluation
(LREC’12) ISBN 978-2-9517408-7-7, 2012b

Gonzalez-Agirre A., Castillo M., and Rigau G. A graph-based method to improve
WordNet Domains. Proceedings of 13th International Conference on Intelligent
Text Processing and Computational Linguistics (CICLING’12) ISBN 978-3-642-
28603-2, 2012a

7.3 Future work
The system created for STS is not completely finished. Thanks to its design in the
form of a cube with layers, we can always incorporate more knowledge, as new
layers, but also in the way in which this knowledge is aggregated. Some of the
resources have become obsolete, such as the Collobert and Weston word vectors.
As new resources are created, it will be interesting introducing them into the sys-
tem, either by replacing old versions or in conjunction with them. For example,
Glove vectors (Pennington et al. 2014) could be a good addition to the cube layers.
Moreover, during the design some layers were discarded, which could be incorpo-
rated as well. Solving the problems that arose when working with them is also an
interesting direction. For example, we believe that a penalty/incompatibility layer
could bring much knowledge to the cube.

Trying to extract more knowledge from the cube is also interesting. We are
convinced that there is more knowledge than we have been able to extract. Finding
optimal alignments within the cube is a motivating task. Brute force is not a
solution to this problem, and one of the possibilities is to use Interpretable STS to
train a system that knows how to find the right alignments. It will be necessary to
create training sets that can help in this step, but first we must analyse the mental
process humans carry out when doing this task. It is likely that more things have
to be taken into account, such as looking at the Part-of-Speech of words we are
aligning, or entity types, etc. Therefore, the next step will be to conduct an in deep
analysis.

Another interesting direction is to incorporate the possibility of working with
compositionality using the cube. Current system can be improved in this as-
pect, for instance when linking ’he surrendered’ to ’gave himself up’ and sim-
ilar phrases such as ’Big Apple’ and ’New York’. Although some of this non-
compositional phenomena is captured by the system, many others are not cor-
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rectly detected and aligned. Using sentence representations to detect this phe-
nomena should improve our system. In the same way, we could use autoencoders
to generate representations of phrases or intermediate nodes of dependency trees,
extending the cube to use word-phrase and phrase-phrase similarities. This ap-
proach requires an aligning algorithm capable to find the best alignment for each
pair of sentences and the computational cost is very high, as the algorithm should
exclude the words and phrases that are already taking part in other alignments.

The Typed Similarity system was constructed as a first approximation, and
even if it achieved good results, it can be improved using more sophisticated tech-
niques. For instance, using the the cube system on the different similarity types
should increase the performance. Furthermore, for these system we only used
the textual information contained in the metadata, and recent works have demon-
strated that neural networks can be used to measure the similarity between images
(Wang et al. 2014). These neural networks were not common when we released
the Typed Similarity dataset, and the images were used only as a guidance for
the annotators. It would interesting to incorporate the knowledge provided by the
thumbnails to the typed similarity system.
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