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Abstract

This monographic work is devoted to the application of autriéatural Language Processing tech-
nology to Empirical Machine Translation and its Evaluation

On the one side, we have studied the problem of automatic Mluation. We have analyzed
the main deficiencies of current evaluation methods, whieain our opinion, from the shallow
quality principles upon which they are based. Instead gfimglon the lexical dimension alone,
we suggest a novel path towards heterogeneous evaluatianrsapproach is based on the design
of a rich set of automatic metrics devoted to capture a widietyaof translation quality aspects at
different linguistic levels (lexical, syntactic and serti@n Linguistic metrics have been evaluated
over different scenarios. The most notable finding is thatrioebased on deeper linguistic infor-
mation (syntactic/semantic) are able to produce moreldelisystem rankings than metrics which
limit their scope to the lexical dimension, specially whle systems under evaluation are differ-
ent in nature. However, at the sentence level, some of thesécmsuffer a significant decrease,
which is mainly attributable to parsing errors. In orderrgprove sentence-level evaluation, apart
from backing off to lexical similarity in the absence of gags we have also studied the possibility
of combining the scores conferred by metrics at differemguistic levels into a single measure of
quality. Two valid non-parametric strategies for metrientmnation have been presented. These
offer the important advantage of not having to adjust thatired contribution of each metric to the
overall score. As a complementary issue, we show how to wsbdterogeneous set of metrics to
obtain automatic and detailed linguistic error analysfsores.

On the other side, we have studied the problem of lexicat8elein Statistical Machine Trans-
lation. For that purpose, we have constructed a Spanigintish baseline phrase-based Statistical
Machine Translation system and iterated across its denwedap cycle, analyzing how to amelio-
rate its performance through the incorporation of lingoikhowledge. First, we have extended the
system by combining shallow-syntactic translation modbelsed on linguistic data views. A sig-
nificant improvement is reported. This system is furtheragewled using dedicated discriminative
phrase translation models. These models allow for a betpgesentation of the translation context
in which phrases occur, effectively yielding an improvexgiidal choice. However, based on the
proposed heterogeneous evaluation methods and manushéeats conducted, we have found that
improvements in lexical selection do not necessarily ingsiymproved overall syntactic or seman-
tic structure. The incorporation of these models into tla¢istical framework requires, therefore,
further study.

As a side question, we have studied one of the main criticesgaénst empirical MT systems,
i.e., their strong domain dependence, and how its negatigete may be mitigated by properly
combining outer knowledge sources when porting a systemamew domain. We have success-
fully ported an English-to-Spanish phrase-based Stediskilachine Translation system trained on
the political domain to the domain of dictionary definitions



The two parts of this monographic work are indeed tightlyramwied, since the hands-on devel-
opment of an actual MT system has allowed us to experiencestrpérson the role of the evaluation
methodology in the development cycle of MT systems.
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Chapter 1

Introduction

Machine Translation (MT) is one of the earliest and most ggraatic problems in Natural Lan-
guage Processing (NLPand Artificial Intelligence (Al). Although the first writirggon the use
of mechanical devices for translation date back from thems®enth century, we must situate the
origins of MT as a field in the late 1940’s, right after World WM& with the availability of the
first electronic computers in the US. In spite of their simip}i original MT systems, based on
bilingual dictionaries and manually-defined lexicalizedndering rules, obtained very promising
results (Stout, 1954). However, after an initial period oplkoria, the lack of progress attained in
the following years lead the US Government to set up the Aatanhanguage Processing Advisory
Committee (ALPAC, 1966). In their report, its committee nimrs concluded that MT was slower,
less accurate and more expensive than human translatidnthremefore, recommended replacing
investment in MT by investment in basic NLP research. Heitceas set the beginning of almost
two decades of difficulties for MT. Still, some research pob$ were developed, but it was not until
the late 1980’s and early 1990’s when, through the use of panerful and faster computers, able
to handle larger amounts of data, MT recovered its origiigoi

Today, turning our eyes back to the past, one may certaitilythizt the ALPAC report has
actually yielded very positive consequences for NLP in tmglterm. Many resources (e.g., tools,
corpora, knowledge bases, etc.) have been developedakpdor widely-used languages, and
are, thus, at our disposal for being exploited in the contéx@tomplex NLP tasks such as MT.
The availability of these resources allows developers tmagose the MT problem into smaller
subproblems which are easier to address. Besides, theiexgeraccumulated in the application
of empirical methods to Al in general, and to NLP in particularovides a battery of applicable
solutions for many of these problems.

This rapid development of the field together with the inhecamplexity of the task, make the
MT scenario very attractive and challenging for NLP reskears. At the same time, the profitability
of MT as a business has motivated a number of companies,gueats and institutions worldwide,
to invest large amounts of money in the funding of MT relatedigrts. Hence, these days we are
living with enthusiasm wealthy times for MT research.

INatural Language Processing is a subfield of Artificial ligehce and Computational Linguistics which studies the
automated understanding and generation of natural humgnaaes.
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In this work, following the current trend in MT research, wienaat exploiting present NLP
technology for MT. Our work addresses the problemEafipirical Machine Translation and its
Evaluation In first place, we have studied the most notable deficierafiearrent evaluation meth-
ods, which arise, in our opinion, from the shallow qualitynpiples upon which they are based.
Instead of relying on the lexical dimension alone, we supggesovel path towardeeterogeneous
automatic MT evaluation based on a rich set of automaticlaiity metrics operating at different
linguistic levels (e.g., lexical, syntactic and semantic)

In parallel to our work in MT evaluation, we have studied thielgpem of lexical selection in
Statistical Machine Translation. For that purpose, we hauestructed a Spanish-English base-
line phrase-based Statistical Machine Translation systedniterated across its development cycle
incorporating linguistic knowledge at different points & to improve its overall quality. As a
complementary issue, we address the problem of domain depea in empirical MT systems.

The two parts of this work are tightly connected, since thedisaon development of an actual
MT system has allowed us to experience in first person theafollee evaluation methodology in
the development cycle of MT systems.

1.1 Machine Translation

MT is formally defined as the use of a computer to translateeasagetypically text or speech,
from one natural language to another. MT is considered,iggidartin Kay, anNLP-completfAl-
completegoroblem, meaning that its general resolution requiredNatural Language Understanding
(NLU).

1.1.1 Natural Language Understanding

NLU is difficult because of Natural Language complexity. ifat languages are expressive —they
allow for many different ways to express the same messaged-aarbiguous —messages may
have many different possible interpretations. For ingammrds in a sentence may have different
meanings, and even when the meaning of all words is knowlhsstitences may have different
readings. Further, these readings may have non-compuitiaterpretations.

The impact of NL ambiguity on MT has been well studied sinaeghrly beginnings of the field
(Kaplan, 1955; Koutsoudas & Korfhage, 1956; Harper, 1988)an illustration, let us recall one of
the most popular examples in MT literatut@ime flies like an arrow. This sentence has several
possible interpretations: (i) time goes by very quicklytjlilee an arrow does, (ii) you should time
flies as you would time an arrow, (iii) time flies in the same me&man arrow would time them, (iv)
time those flies that are like arrows, (v) time flies (as a tyfjgasect) enjoy an arrow, etc. However,
our knowledge about the use of language tells us that the ptassible interpretation is the first
one; the sentence as a metaphor instead of as a literal testcri

2We recommend Chapter 6 in (Arnold et al., 1994) for a detailescription of the linguistic problems inherent to
the Translation task. The reader may find as well an excealggurt on MT divergences in (Dorr, 1994). Harold Somers
provides also a very nice material for discussion on thisctap his MT courses lttp://www.alta.asn.au/
events/altss w2003 _proc/altss/courses/somers/somers.html ).
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Moreover, even when the sentence structure is clear, tstiley have different interpretations
in the context of the real world. In that respect, let us rdpo@ another classic example provided
by Yehoshua Bar-Hillel in 1960:Little John was looking for his toy box. Finally he found the
box was in the pen. John was very happyti order to decide whether the woigken’ refers to a
writing instrument or to a child’s play pen, real world kn@gbe, for instance, on the relative size
of objects, is required. NLU involves, therefore, ambiguisolution at different linguistic levels.
Below, we list the most common types of ambiguity:

e Categorial ambiguity, i.e., words having more than one possible grammatical oateg
e Word sense ambiguity,i.e., words having more than one possible meaning or sense.

e Syntactic ambiguity, i.e., sentences having more than one possible syntacmpgateading
to multiple alternative semantic interpretations.

e Semantic ambiguity,i.e., sentences syntactically unambiguous having stithidint possible
semantic interpretations.

e Referential ambiguity, i.e., anaphoric noun phrases having more than one possiielent.
e Ellipsis, i.e., incomplete sentences in which the missing constitisemot clear.

e Pragmatic ambiguity, i.e., when the meaning depends on the context of the cuiitaatisn
(e.g., discourse, real world knowledge).

The level of complexity increases in the case of spoken lagguFor instance, additional types
of ambiguity (e.g., phonetic ambiguity, emphasis drilg.ptnd other difficulties (e.g., ungrammat-
ical speech) appear.

1.1.2 Classification of MT systems

Approaches to MT may be classified according to severalriité-or instance, regarding the de-
gree of human interaction, MT systems may be classified JnMéchine-aided Human Transla-
tion (MAHT), (ii) Human-aided Machine Translation (HAMTand (iii) Fully Automatic Machine
Translation (FAMT) systems (Yngve, 1954). Nowadays, mashmmercial systems implement a
MAHT scheme, whereas FAMT systems are dominant in the latemostly free.

According to the level of linguistic analysis that is perfd, MT systems may be classified
in three groupsdirect, transfer, and interlinguaFigure 1.1 depicts an updated version of the fa-
mous Vauquois triangle. In thdirect approach a word-by-word or phrase-by-phrase replacement
is performed (Weaver, 1955; Yngve, 1955; Yngve, 1957). mtthnsferapproach the input is
syntactically and/or semantically analyzed to produce wc®abstract representation, which is
transferred, generally through the use of linguistic rulego an abstract target language depen-
dent representation, from which the output is generatediqivais et al., 1966). Thmterlingua
approach is similar to the latter but with the differencet ttere is a unique abstract representa-
tion (Gode, 1955; Darlington, 1962). The interlingual es@ntation is language independent and
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interlingua
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Figure 1.1: The Vauquois triangle for the classification of Bystems according to the level of
linguistic analysis

deeply detailed, so all possible sentences expressingithe smieaning in all languages receive the
same representation. In this manner, the transfer betvepeasentations is no longer necessary.

With respect to the core technology, MT systems may be ¢iedsn two typesrule-basedand
empirical Inrule-based systema set of rules describing the translation process arefggubby hu-
man experts. In contragmpirical systemacquire this knowledge automatically from a collection
of translation examples. Actually, the expression ‘rudesdxd’ is slightly inaccurate nowadays. The
reason is that empirical MT systems may also use automigticaluced rules. Therefore, perhaps
it is more appropriate to refer to these two types of systesmawledge-driverand data-driven
However, for historical reasons, the term ‘rule-basedtilswgidely used.

Another distinction between rule-based and empiricalesystused to be that, while rule-based
systems typically performed some kind of linguistic tramgie.g., syntactic, shallow-semantic, in-
terlingual), empirical systems usually performed a diteantslation of lexical units. This argument
does not hold anymore either. Empirical systems often pmate linguistic knowledge (e.g., syn-
tactic parsing, see Chapter 4). In that respect, let us alt® the intentional amendment of the
Vauquois triangle, in Figure 1.1, with a dashed line représg the current trend in direct ap-
proaches to incorporate linguistic analysis.

Taking into account the differences and similarities betwveile-based and empirical approaches,
it will not be surprising that a variety of hybrid MT methodspdoiting the best of both alternatives
appear in the next few years. Indeed, several approachieéngierery promising results have been
recently suggested (Alegria et al., 2008; Sanchezdktztet al., 2007; Simard et al., 2007). For
instance, Simard et al. (2007) presented a valid hybridizatcheme based on the statistical post-
editing of the output of a rule-based MT system.

1.1.3 Current Applications

While MT technology has proved effective to aid human tratish, and vice versa, it is not yet
mature enough to allow for high-quality FAMT, except forelial translations in very restricted
domains. This s the case, for instance, of the METEO systmaridioux & Grimalia, 1996), which
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translates Canadian weather forecasts from English irgadfr, or the KANT system (Carbonell
et al., 1992), devoted to the translation of machinery misrifuem English into various languages.
FAMT systems are, however, widely used in the Internet. Rstaince, the rule-based SYSTRAN
MT system powers a number of web sites. Also, military agesicely on FAMT technology for
the processing of languages spoken in conflict areas (erghi@ Pashto, Urdu, Dari). Moreover,
the globalization of the economic system has also motivatgbwing interest in the development
of FAMT applications for languages in emerging marketshsag Chinese, which is also the most
widely written language in the world with more than 1 billispeakers.

1.2 This Book

In this work, we have exploited current NLP technology for fitncal Machine Translation. Our
goal is twofold. On the one side, we have studied the problefutbmatic MT EvaluationWe have
analyzed the main deficiencies of the current methodologlysaiggested several complementary
improvements. Our approach is based on the design of a getexous set of automatic metrics
devoted to capture a wide variety of translation qualityeatp at different linguistic levels, from
the lexical, through the syntactic, and onto the level of astics. We also study the possibility of
combining the scores conferred by different metrics intingle measure of quality.

On the other side, we have built an empirical MT system ance tenalyzed several of its
limitations. We have incorporated linguistic knowledg#oithe system with the aim to improve
overall translation quality. In particular, we have addegsthe problem ofexical selection We
show that employing linguistic information allows for a tegtmodeling of the translation context,
effectively yielding an improved translation quality. Aside question, we have also studied one of
the main criticisms against empirical MT systems, and eicgdiepproaches to NLP in general, i.e.,
their strong domain dependence. We show how its negatieetsfmay be mitigated by properly
combining outer knowledge sources when porting a systeoraimew domain.

As stated in the beginning of the introduction, there is aneation between the two parts of
this book in the sense that acting as system developers lbagdlus to experience the enormous
influence of evaluation methods across the different stafjdbe development cycle of an MT
system. In the following, we outline the work deployed inlea€ these two research lines, as well
as the circumstances that motivate it in the context of otif&Tl research.

1.2.1 Automatic MT Evaluation

Automatic evaluation methods have notably acceleratedi¢hrelopment cycle of MT systems in
the last decade. They play a key role, allowing for fast nucaéevaluations of translation quality
on demand, which assist system developers in their everyeleigions. However, there are several
purposes for which the behavior of current automatic evelnanethods is clearly unsatisfactory:

Evaluation of Global MT Quality. In many cases it has been argued that automatic metrics are
unable to capture the quality changes which are due to tloegocation of linguistic knowl-
edge (Yamada, 2002; Charniak et al., 2003; Och et al., 200B® reason is that, despite
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possible claims on the contrary, none of current metricgigdes, in isolation, alobal mea-
sure of quality. Indeed, all metrics focus partial aspects, and, while quality dimensions are
diverse, most of current metrics limit their scope to thedakdimension.

System Optimization. The quality of a MT system depends very strongly on the metlected
to guide the development process. In other words, a systgumstad so as to maximize the
score of a selectegbldenmetric does not necessarily maximize the scores confegrethier
metrics. We refer to this problem agstem over-tunin{see Section 2.2.3).

Comparison of MT Systems. Current automatic evaluation metrics may not always pevéli-
able system evaluations. In particular, comparisons lEtwWaT systems directed towards
different quality aspects have been showed to be problenj@allison-Burch et al., 2006;
Koehn & Monz, 2006). In particular, Callison-Burch et algae that MT researchers have
possibly been overreliant on the capabilities of the BLE Uasuge, and, therefore, it is pos-
sible that a number of inaccurate conclusions had been ditmwnpast experiments. They
even suggest that some of the ideas in recent literaturddsbeurevisited and reevaluated.
We further discuss this issue in Section 2.2.3.

Error Analysis. Current automatic evaluation metrics fail to provide reléaevaluations at the
sentence level (Blatz et al., 2003; Turian et al., 2003). id&ss they do not elaborate any
interpretable information or explanation about the typerodrs encountered which may help
system developers to identify the strengths and weakne$slesir systems.

In order to overcome these limitations, we have deployedChapter 3, a novel evaluation
framework forheterogeneousutomatic MT evaluation. Our proposal is based otivade and
conquerstrategy. Instead of relying on individual metrics, we stindw the scores conferred by
different metrics can be combined into a single measure efitgu For that purpose, we have
compiled a rich set of specialized automatic metrics opegait different linguistic levels (lexical,
syntactic, and semantic). Our evaluation methodology e lvalidated over several test beds
from recent well-known international evaluation campaigBesides, it is used, in Chapters 5 and
6, so as to assist us while iterating across the developnyeig of the SMT system built for the
purposes detailed in Section 1.2.2.

The main contributions of this work in this research line are

e We present a heterogeneous set of similarity measurestimgeaa different linguistic levels
(Giménez & Marquez, 2007b; Giménez & Marquez, 2009h)r &pproach provides a general
framework for the definition of linguistic metrics which hlasen instantiated over particular
similarity aspects.

e We show that linguistic metrics at more abstract levels mayide more reliable system
rankings than metrics which limit their scope to the lexidamhension, specially in the case
of systems belonging to different paradigms (Giménez &ddaz, 2007b).

e We have studied the behavior of linguistic metrics in anexe evaluation scenario corre-
sponding to low-quality translatior?. We show that linguistic metrics are robust against
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parsing errors committed by the automatic linguistic pssoes upon which they are based,
particularly in the case of system-level evaluation. Atskatence level, some of these met-
rics (e.g., based on semantic parsing) suffer a significacrtedise.

e We have exploited the possibility of combining metrics dfiedent linguistic levels (Giménez
& Marquez, 2008a). Our approach offers the important athganof not having to adjust the
relative contribution of each metric to the overall scoresignificantly improved evaluation
quality at the sentence level is reported.

e We have showed how to apply linguistic metrics for the puepokerror analysis (Giménez
& Marquez, 2008b). Our proposal allows developers to dgpidbtain detailed automatic
linguistic reports on their system’s capabilities.

e As a by-pass product, we have developed a software packadeterogeneous MT evalu-
ation, 1Qur, which may be freely downloaded for research purposes ¢Ban'et al., 2005a;
Giménez & Amigo, 2006; Giménez, 2007).

e We have studied the problem of meta-evaluation in the comteT (Amigo et al., 2006).
We have found that there is a tight relationship between muiikaness and human accept-
ability.

1.2.2 Empirical MT

The second part of this book focuses on the study of fullyrmatec empirical MT of written Natural
Language. By fully automatic we emphasize the fact that light human interaction is required.
By written Natural Language we distinguish text translatitom speech translation.

Figure 1.2 depicts the prototypical architecture of an eitgdiMT system. Translation knowl-
edge is acquired from a parallel corpus produced by humasl&®rs encoding translation exam-
ples between the languages involved. Parallel corpora achime-readable document collections
in two or more languages, such that each document is availaflll languages, either as a source
document or as the human translation of the associatedesdoaument. Typically, parallel cor-
pora are automatically aligned at the paragraph or senlerek(Gale & Church, 1993). Minimal
aligned units are often referred to ssgmentsParallel corpora are also called bitexts when there
are only two languages represented.

Empirical systems address MT as the problem of decidinggrgan input text and acquired
MT knowledge models, which is the most appropriate tramsiaficcording to a given optimiza-
tion criterion. Pre-processing and post-processing gps, tokenization, dedicated treatment of
particular expressions such as dates, etc.) are optional.

Among empirical MT systems, the two most well-studied payad are Example-based Ma-
chine Translation (EBMT) and Statistical Machine Translat(SMT). Originally, these two ap-
proaches were clearly differentiable. EBMT methods usdmktlinguistically guided whereas SMT
methods were statistically guided. Also, EBMT methods useedxploit source similarity while
SMT systems exploited target similarity. These distint$ialo not hold anymore. Indeed, the two
approaches seem to be suavely merging into a single empticaaradigm (Way & Gough, 2005;
Groves & Way, 2005).
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Figure 1.2: Architecture of an Empirical MT system

We have focused on SMT, which is today the most popular eogbiagpproach to MT. SMT is
also very well founded from a theoretical viewpoint. But thain reason for selecting SMT is that
it allows for obtaining competitive results without using additional linguistic information further
than that implicitly encoded by lexical units. So, the ro@mngotential improvement is in principle
very large, and, at the same time, increasing the systentygisavery challenging.

In our work, we suggest using current NLP technology and kedge for improving an SMT
system. Therefore, our golden assumption, and that of mdngr cesearchers (see Chapter 4), is
that a system working with richer linguistic knowledge sldobe able to make better decisions.
For that purpose, we have analyzed several points in themyatchitecture where improvements
could take place. See Figure 1.3 as compared to Figure 1.@nAge would start from a parallel
corpus. Linguistic processors would be used to annotatetlit wformation at different levels.
This linguistically enriched corpus would be used to traioreninformed knowledge models. At
translation time, given a (linguistically) pre-procesgmglt, these models would be used to provide
more accurate translations. The resulting system outpulddee (linguistically) post-processed.
Additional external knowledge sources, such as lexicablogies or dictionaries, could be used at
any stage.

In order to deploy such an architecture, first, we have adapteumber of NLP tools based
on Machine Learning (ML), such as part-of-speech taggetssaallow syntactic parsers (see Ap-
pendix B). We have also collected resources such as pacalebra, dictionaries and multilingual
lexical databases. Then, we have constructed a state-@lftiphrase-based SMT system, and stud-
ied how to incorporate these tools and resources into theray®r several distinct purposes and
with the final intent to improve the overall MT quality of thgstéem (see Chapters 5, 6 and 7). In



1.2. THIS BOOK 9

Par al | el
Cor pus

X

Human
Translators
v e
- J\

7 Linguistic
\( Processors )
~ -

I
I N
\ — —

I N < >
| MI Knowl edge External |

Model s == == = Know edgeJ
I - -
I - - - - - 7 -

// 7

Figure 1.3: Architecture of a Linguistically-aided Empal MT system

Chapters 5 and 6, we have studied whether it is possible toowepthe modeling of translation
probabilities in SMT by using automatically annotated lirggic knowledge at levels deeper than
the lexical level. We have focused on the problem of lexie&cion, i.e., on deciding, for a given
lexical unit (word or phrase), which is the best translationong the set of possible translation
candidates available (see Section 4.1.2). We have builioghayntactic translation models and
improved their performance by building dedicated phraaedsiation models which are able to take
into account a wider feature context. Our approach is baseslipervised discriminative learning.
As a side question, in Chapter 7, we have studied one of the onidicisms against empirical MT
systems, i.e.domain dependenceéNe present a case study in which we apply several techniques
for improving the behavior of SMT systems when used in newalom

The main contributions of this work in this research line are

e We show that linguistic information at the level of shalleyatax may be successfully used to
improve phrase-based translation models (Giménez & Merg2005; Giménez & Marquez,
2006b). Our approach is based on building shallow-symtaetird and phrase alignments.
We also present two valid phrase alignment combinationraeldor translation modeling.

e We show how to build dedicated discriminative translatioadels (Giménez & Marquez,
2007a; Giménez & Marquez, 2009a). These models allow foeteer representation of the
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source translation context in which phrases occur, whiatidéo a more reliable estimation of
phrase translation probabilities. Apart from exhibitingigher local accuracy than the base-
line approach based on maximum likelihood, we show thakthesdels can be successfully
integrated into a phrase-based SMT system and applied ttullhteanslation task, yield-
ing a significantly improved lexical selection. Howevenaingh heterogeneous automatic
evaluations, we have observed that an improved lexicacehddes not necessarily imply an
improved overall syntactic or semantic structure. Manwalwations have confirmed these
results.

We have studied the problem of domain dependence (Giménaiz, 005b; Giménez &

Marquez, 2006a; Garcia et al., 2009). First, we have usetbinain corpora to build spe-
cialized language and translation models. We show thatpbssible to adapt an existing
SMT system to a very different domain using only a very smabant of data belonging to

the new domain. Second, we show that corpora from a similaraito may be helpful both

for language and translation modeling. Third, we have hlalhain-independent translation
models based on WordNet (Fellbaum, 1998). These modelstwaveported, however, much
impact on translation quality, except for the case of unkmeverds.

Our work in the development of an SMT system evinces the need heterogeneous MT
evaluation methodology as the one proposed in this book.

1.2.3 Document Overview

The rest of this book is organized as follows.

e Partl. MT Evaluation

— Chapter 2. Machine Translation Evaluation
This chapter provides an extensive review on MT evaluatiethods. We discuss both
manual and automatic measures as well as the the role ofadiesiumethods in the
context of the current development cycle of MT systems.

— Chapter 3. Towards Heterogeneous Automatic MT Evaluation
In this chapter, we present our proposal towards heteregsnautomatic MT evalua-
tion. We describe a wide set of metrics operating at diffeliaguistic levels and study
their individual and collective application over severaghleation scenarios. We also
present our approach to metric combination and to autoreatic analysis.

e Part Il. Empirical MT

— Chapter 4. Statistical Machine Translation
In this chapter, we give an overview of the fundamentals amckat trends in Statistical
Machine Translation. We describe the shift from word-baseghrase-based transla-
tion, as well as some of the most prominent extensions stegjasthe last decade, with
special focus on the incorporation of linguistic knowledgée also discuss the problem
of domain dependence in SMT.
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— Chapter 5. Shallow Syntactic Alignments and Translation Mbdels
This Chapter presents the construction of a baseline Spamiglish phrase-based SMT
system based on a collection of Proceedings from the Eunopadiament, and its en-
hancement through the use of shallow-syntactic translatiodels. Linguistic knowl-
edge is incorporated during the word and phrase alignmecepses.

— Chapter 6. Discriminative Phrase Selection for SMT
This Chapter explores the application of discriminativaféng to the problem of phrase
selection in SMT. We build dedicated local phrase trarmtatiassifiers which are able
to take further advantage of the source context. We also $tmwlocal predictions
can be softly integrated into a phrase-based SMT systeninéopurpose of the global
translation task.

— Chapter 7. Domain Adaptation of an SMT System
This Chapter presents a practical case study on the adaptdtthe empirical MT sys-
tem built on the previous chapters, from the political dam{ae., European Parliament
Proceedings) to the domain of dictionary definitions (iWagrdNet glosses). Several
complementary improvement techniques are presented.

e Chapter 8. Conclusions
In this chapter, main conclusions are drawn, and future Wwdktlined.

e Appendices

— Appendix A. Author’s Publications
This appendix is a full list of author’s publications whilerelled in this PhD program.

— Appendix B. Linguistic Processors and Tag Sets
This appendix provides information on the linguistic presmrs utilized as well as a
series of tables describing the associated tag sets.

— Appendix C. Metric Sets
This appendix provides a full list of metric variants in therent metric set. These are
grouped in several families according to the linguisticeleat which they operate.

How to read this document

As sketched across the introduction, there are two weidihtiated parts in this work. The first
part (Chapters 2 and 3) addresses the problem of MT evatudieaders familiar with this subfield
may skip most of the sections in Chapter 2. However, for e&betiderstanding of the motivations
of our research work, it is highly advisable to revise Setti@.2 (specially Section 2.2.3), and
2.4 (specially Sections 2.4.2 and 2.4.4). Then, in Chapteve3introduce our proposal towards
heterogeneous automatic MT evaluation, and validate it s&eeral evaluation scenarios. Thus, in
this part of the book, we have acted mainly as metric devetogeéowever, the methods presented
will also assist us in the second part of the book, in our cemgintary role as system developers.
The second part (Chapters 4 to 7) is devoted to the congiruatid development of an SMT
system. Chapter 4 is essentially a survey on the state ofrtia 8MT. Readers familiar with
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this topic might want to proceed directly to Chapter 5, alifiio Sections 4.2, 4.4 and 4.5 will be
referenced back, since they describe a selection of thenglegaint works respectively related to the
contents of the following three chapters. Chapters 5 andbvdéh the problem of lexical selection.
First, Chapter 5 describes the construction of a Spanidintgish baseline system improved with
shallow-syntactic translation models. Then, in Chaptehig, system is further improved building
dedicated discriminative phrase translation models afong on shallow-syntactic information.
Chapter 7 studies the separate problem of domain dependandét is only related to the two
previous chapters in that the baseline SMT system is the ,saltheugh in the reverse direction
(i.e., English-to-Spanish).

Finally, in Chapter 8, we present a summary of results andriboitions, as well as the main
conclusions that can be derived. Future research work aadtidins are also outlined.
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Chapter 2

Machine Translation Evaluation

Since its origins, research in MT has been accompanied ®ares in MT Evaluation (Miller
& Beebe-Center, 1956; Pfafflin, 1965). In particular, thkes been a wide interest in automatic
evaluation methods. The reason is that these methods alltaomnsiderably accelerating the devel-
opment cycle of MT systems, and NLP applications in gendfabfnpson, 1991).

However, evaluating translation quality is a complex isstikis arises from the fact that MT
is anopenNLP task. Given a certain input, the set of solutions is nosetl; every human subject
could potentially produce a different translation, andbatihem could be in principle equally valid.
This is due to the expressiveness and ambiguity of Natunaguage itself (see Section 1.1.1).

A number of evaluation methods have been suggested. Eidnenathor automatic, all share the
common characteristic of operating over predefined testsuie., over fixed sets of translation test
cases (King and Falkedal 1990)Therefore, a first important concept to bear in mind is tbat t
suites introduce a significant bias in the evaluation pmcé®r instance, if the test bed does not
cover a representative set of test cases, evaluationgdsadt accordingly. Also, if the set of manual
reference translations represents only a small part of ti@aerspace of solutions, the significance
of the results is affected. Similarly, if the set of autoratanslations represents only a small subset
of MT systems (e.g., systems belonging to the same paradigdifferent versions of the same
system), or a specific language pair, or translation dontiaényalidity of the evaluation results will
be restricted to the specific evaluation scenario.

In the following, we have elaborated a thorough review on Maleation. First, in Section 2.1,
we talk about context-based evaluation of MT systems. Thenfocus on what relates to the
research work presented in this book. Section 2.2 disculksesle of the evaluation scheme in the
MT development cycle. In Sections 2.3 and 2.4 we respegtidescribe some of the most relevant
approaches to manual and automatic evaluation.

2.1 Context-based Evaluation

Although the focus of our work is in the evaluation of tratisla quality independently of the con-
text of the MT system, this section is a brief note on conteded evaluation. This line of research

1A test case typically consists of a source sentence and & lsetran reference translations.
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promotes the idea that potential users of MT technology Ishiingt evaluate the suitability of this
solution for their specific purpose. In that respect, Chanott Hovy (1993) analyzed what require-
ments a good niche application for MT should meet. They ssiggesix desiderata: (i) it should set
reasonable expectations, (ii) it should make sense ecaadiyi(iii) it should be attractive to the
intended users, (iv) it should exploit the strengths of tlaehme and not compete with the strengths
of the human, (v) it should be clear to the users what the systa and cannot do, and (vi) it should
encourage the field to move forward toward a sensible lormg-tgal. These principles were fur-
ther discussed and extended by the Evaluation Working Gobtipe ISLE Project (1999-2002)
The main focus of this working group was the development daasification or taxonomy of the
features that are relevant to machine translation evaluatirhey organized several workshops,
and, overall, they developed FEMT la framework for context-based MT evaluation (Hovy et al.,
2002). FEMTI provides a methodology to evaluate MT systeatsmling to a wide range of char-
acteristics and quality aspects such as functionalitialviity, usability, efficiency, maintainability,
portability, cost, etc. FEMTI is made of two interrelate@sdifications or taxonomies. The first
classification enables evaluators to define an intendedxbof use for the MT system to evaluate.
The second classification links the selected relevant tyuetiaracteristics to a set of metrics asso-
ciated. Once the context of the evaluation is defined, inaesp, FEMTI generates appropriate
evaluation plans to be executed by the user.

2.2 The Role of Evaluation Methods

The current development cycle of MT systems follows the fldart depicted in Figure 2.1. In
each loop of the cycle, system developers must identify aradyae possible sources of errors.
Eventually, they focus on a specific subproblem and thinkasfsgpole mechanisms to address it.
Then, they implement one of these mechanisms, and testtie Hystem behavior improves (i.e., the
number of the selected type of errors diminishes withoutnivag the overall system performance),
the mechanism is added to the system. Otherwise, it is disdarin the context of MT system
development, evaluation methods are necessary for threepugposes:

e Error Analysis, i.e., to detect and analyze possible cases of error. A fioevlatlge of the
system capabilities is essential for improving its behavio

e System Comparison i.e., to measure the effectiveness of the suggested mieati@anThis
is done by comparing different versions of the same systens. adlso common to compare
translations by different systems, so system developeyshoaow successful mechanisms
from each other. This allows the research community to ackvéogether.

e System Optimization i.e, the adjustment of internal parameters. Typicallgsthparameters
are adjusted so as to maximize overall system quality asurezhsccording to an evaluation
method at choice.

2http://www.issco.unige.ch/projectsfisle/
3http://www.issco.unige.ch/femti
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Figure 2.1: MT system development cycle

2.2.1 A Review

In the following, we provide a brief historical overview dmet evolution of the evaluation scheme
in the context of the MT system development. The originalettggment scheme, prior to the
availability of automatic evaluation metrics, was engirbhsed on human evaluations (see top-left
flow chart in Figure 2.2). In this scheme, system develogderated across the development cycle
constantly introducing new changes so as to improve thetopype systems (process I). Eventually,
they performed manual evaluations in order to evaluate ¢igee# of progress attained, possibly at
the time of running a competitive evaluation exercise (pssdl). Manual evaluations produced one
or moremanual rankinggdepending on how many quality aspects were considered¢hvelgstem
developers could take into account for further system iwgmeent.

The main drawback of the original scheme was that human ssgegs are expensive to ac-
quire. Therefore, system developers could not monitoresysinprovements with enough regular-
ity. In order to accelerate the development cycle, in theexurscheme (see top-right flow chart
in Figure 2.2), a process @utomatic evaluatior{process lll) was added to the development cy-
cle (Thompson, 1991). Automatic evaluation is basecotomatic metricsvhich determine the
quality of asystem outpuaccording to its similarity to a predefined setreferencegenerated by
human subjects



18 CHAPTER 2. MACHINE TRANSLATION EVALUATION

X

Human Assessors

System Outputs

Human
Evaluation
(I

Manual Rankings

X

Human Assessors

System Outputs

System
Development
U]

Human
Evaluation
an

X

Human Subjects

Automatic Evaluation Metrics

et
Human References

Manual Rankings

Automatic
Evaluation
(I

System
Development
()

Automatic Rankings

X

Human
Evaluation
(1

Human Assessors

System Outputs

ky
‘

Manual Rankings

System
Development
(1)

Human Subjects

Human References

Metric selection
(meta-evaluation)
(v)

%

Automatic Evaluation Metrics

Automatic
Evaluation
(1

Automatic Rankings

Figure 2.2: Evolution from the evaluation scheme entiredgddl on Human Assessors (top-left
chart) to the evaluation scheme based on human assessaxstanthtic metrics (top-right chart).
The role of meta-evaluation in this latter evaluation schégrillustrated in the bottom chart.
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2.2.2 Meta-Evaluation

Automatic evaluation metrics allow researchers to evalaatd optimize their systems without re-
quiring the intervention of expensive human assessors.ederythe usage of automatic evaluation
measures generates in its turn an additional step in thdageaent cycle: meta-evaluation, i.e., the
evaluation of evaluation measures.

The bottom flow chart in Figure 2.2 illustrates the role of aevaluation in the current MT
task development cycle (process IV). Prior to starting émaite across the system development
cycle, developers must decide which is the most suitableuatian metric for the task at hand.
This decision will have an enormous influence over the wheleebpment cycle, since the metric
selected will be responsible for guiding the developer intifying the system weaknesses and
deciding which modifications should be introduced. Moreptree metric will also be used to judge
whether the modifications are helpful or not. And, commotitye metric will also govern any
process of adjustment of parameters guiding the systenrdsvwanfigurations which maximize the
guality aspects the metric is able to capture. In the follmyive describe the two most well studied
meta-evaluation criteria.

Human Acceptability

The quality of automatic MT evaluation metrics is usuallyiraated in terms of their ability to
capture the degree of acceptability to humans of automatiskations, i.e., their ability to emulate
human assessors. This is usually measured on the basisrefation between automatic metric
scores and human assessments of translation quality @Pa@nal., 2001; Callison-Burch et al.,
2007). The underlying assumption is tlgagod translations should be acceptable to human eval-
uators. For that reason, we call this type of meta-evalnadi® based ofluman Acceptability
Typically, metrics are evaluated against adequacy or fjuassessments, or a combination of the
two, using either Pearson (1914, 1924, 1930), Spearmad)@&endall (1938; 1955) correlation
coefficients.

Most of current metrics have been developed on the basismahwacceptability. For instance,
Papineni et al. (2001) sayWe propose a method of automatic machine translation et
that is quick, inexpensive, and language independentctira¢lates highly with human evaluation,
and that has little marginal cost per run.Turian et al. (2003) say:The most important criterion
for an automatic MT evaluation measure is that it ranks MTteays the same way that a human
judge would rank them,’Lin and Och (2004a) say]...] the first criterion to assess the usefulness
of an automatic evaluation measure is to show that it cotedahighly with human judgments
in different evaluation settings.’Kulesza and Shieber (2004) sa$fhe resulting metric [...] is
shown to significantly improve upon current automatic nestrincreasing correlation with human
judgments [...], and Banerjee and Lavie (2005) sdyVe evaluate METEOR by measuring the
correlation between the metric scores and human judgenaoéiitanslation quality”

Actually, correlation with human assessments is a reasemaiberion, since automatic evalu-
ation metrics were originally meant to replace human assests, and therefore correlation with
them seems the most direct (and interpretable) way of ergstinat such replacement is possible.

However, meta-evaluation on the basis of human acceptapiesents the major drawback of
relying on human evaluations, which are, expensive, naaigle, subjective, and possibly partial
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(see Section 2.3). As a result, the behavior of automaticicsas usually validated only in very
few and specific evaluation scenarios, often in the contexh@valuation campaign or shared task,
and over a limited number of samples. For instance, most-swetlmation reports focus on a single
language pair, a specific translation domain, and a smatfsststems typically belonging to the
same MT paradigm.

The problem of meta-evaluating on a very specific scenatiwaisresults are not guaranteed to
port well to other evaluation scenarios. The reason is tatquality aspects distinguishing high
quality from low quality translations may vary significanffom one scenario to another, and, con-
sequently, the performance of metrics operating on diffiegeiality dimensions may vary as well.
In other words, the behavior of automatic metrics dependsmmber of variables such as the lan-
guage pair, the specific domain of the translation task, laatlpology of systems under evaluation.
Thus, it would seem reasonable to conduct a meta-evaluptmress prior to any evaluation stage
or campaign. However, meta-evaluation is in most caseségihor conducted only a posteriori.
The reason is that human acceptability is a too costly swidtr that purpose.

Human Likeness

A prominent alternative criterion is to evaluate metricsanms of their ability to capture the degree
of human likenessf automatic translations. The underlying assumption & glood translations
should resemble human translations. Human likeness idlysneasured in terms afiscrimina-
tive power i.e., the metric ability to capture the features whichidgish human from automatic
translations (Corston-Oliver et al., 2001; Lin & Och, 200Klilesza & Shieber, 2004; Amigo et al.,
2005; Gamon et al., 2005). The idea is that, given that humnsashations are gold standardg@od
metric should never rank automatic translations higheggality) than human translations. Then,
when a system receives a high score according to such a me#rican ensure that the system is
able to emulate the behaviour of human translators.

The main advantage of human likeness is that it is a much nustestfective alternative, since
the need for human assessments disappears. Human likggess thus, the path towards a new
development scheme entirely based on automatic metries={gare 2.3 as compared to the bottom
flow chart in Figure 2.2). In this scheme, human subjects alerequired for solving the test cases
(as systems do) and, thus, to serve as models (i.e., prgvdiman references) for the evaluation
process. Avoiding human assessments eliminates also tjectue factor: the assessment eval-
uation guidelines. In addition, human assessments aiie, Stdtile discriminative power can be
updated if new human references or system outputs are im@tgal to the test bed along time.

However, meta-evaluation based on human likeness preaemigjor shortcoming; just like
automatic evaluation, it depends strongly on the hetemiggrepresentativeness of the test beds
employed (i.e., sets of test cases, and associated autosyatem outputs and human reference
translations). For instance, if the set of reference tediwgis per test case is small it may not
represent well the full set of acceptable solutions, andrie&a-evaluation process may be biased.
Therefore, the applicability of human likeness as metddexion criterion must be further studied
and validated.

In this respect, in a joint effort with Enrigue Amigé andiduGonzalo, from théUniversidad
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de Educadin a Distancia”(UNED), in Madrid, we have conducted a comparative studyherbie-
havior of human likeness and human acceptability as methration criteria in the context of open
NLP tasks, such as Machine Translation and Automatic Suiaatem. Results have revealed that
there is an interesting relationship between them (Amigél.e 2006). While human likeness is a
sufficient condition to attain human acceptability, humanegtability does not guarantee human
likeness. In other words, human judges consider acceptadislations that are human-like, but
they may also consider acceptable many other automatislataons that would be rarely generated
by a human translator. Therefore, given that human likeisesstronger condition, it seems reason-
able to think that basing the development cycle on it shaeadl to similar results. This hypothesis
is currently under study.

2.2.3 The Metric Bias Problem

Evaluation measures are all focused on partial aspectsalityge.g., adequacy, fluency, lexical
similarity, etc.). The main problem of partial measureshat tthey may generate strongly biased
evaluations. Besides, since evaluations are requiredetadetages, this bias may propagate across
the whole system development cycle, leading developersrigedinaccurate conclusions and, con-
sequently, to make wrong decisions. We refer to this protasrthemetric biasproblem.

In the following, we illustrate the negative effects of nietrias through three different exam-
ples, respectively based on system evaluation, systemmigpgtion, and system development.

Unfair System Comparisons

Often, it is the case that different metrics produce diffiei®y/stem quality rankings over the same
set of test cases. The reason is that quality aspects arselaed not necessarily interrelated. Thus,
metrics based on different similarity assumptions may eodifferent scores.
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For instance, Charniak et al. (2003), who worked on syntsel language modeling for SMT,
reported a significantly improved translation quality adig to manual evaluations. However, the
BLEU metric did not capture this improvement, but refleciadtead, a severe 30% quality dfop

Other similar cases have been recently reported. For icstalallison-Burch et al. (2006) and
Koehn and Monz (2006) detected several problematic cakdededo the automatic evaluation and
ranking of MT systems based on different paradigms (e.gnamiaided vs. statistical, rule-based
vs. statistical) and, therefore, oriented towards difierguality aspects. They noticed a strong
disagreement between human and automatic evaluationsprohiem was that they used BLEU,
a metric based on lexical matching, to evaluate systemg) akfferent lexica.

As an example, Figure 2.4 illustrates the case of the Arebienglish 2005 NIST MT Evalua-
tion Exercisé reported by Callison-Burch et al. (2006). BLEU scores aottetl against average
human scores on adequacy (left) and fluency (right). It caodserved how BLEU rankings do
not fully correspond to the manual evaluation. In particulae LinearB system was ranked 1st by
human judges and 6th by BLEU. The reason is that BLEU favorsgy§tems which share the
expected reference lexicon (i.e., statistical systenmg) peenalizes those which use a different one.

These findings agree with those by Coughlin (2003), who pttesglea very rigorous study on the
correlation between BLEU and NIST scores and human assassioietranslation quality over a
large variety of evaluation scenarios (including diffdrbtT systems, different language pairs, and
varying number of reference translations available). Tthemd out that:-gram based metrics tend
to favor statistical systems vs. rule-based/hybrid systefime reason is that statistical systems are
likelier to match the sublanguage (e.qg., lexical choice @uler) represented by the set of reference
translations, when, indeed, lexical similarity is not &fisignt neither a necessary condition so that
two sentences convey the same meaning. On the contrary, laawseseen in Section 1.1.1, natural
languages are expressive and ambiguous at different levels

This problem is further analyzed in Section 3.2. We show heirics at deeper linguistic levels
provide more reliable system rankings than metrics whitiit liheir scope to the lexical dimension.

“BLEU score decreased from 0.1031 to 0.0717.
Shttp://www.nist.gov/speech/tests/summaries/2005/mt0 5.htm
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System Overtuning

Adjustment of parameters is a crucial step in the developrokan SMT system. Particularly
critical is the tuning of the parameters that govern thecdeaCommonly, a minimum error rate
iterative strategy is followed (Och, 2003). At each itevatthe MT system is run over a so-called
development set under a certain parameter configuratiothefgnd of the process, the configuration
producing the output of lowest error rate is selected tosteda new text. Error rate is typically
measured according to an evaluation metric at choice,alipiBLEU.

Optimizing over an error measure based on a single metrigepte a major drawback. The
system may end strongly biased towards configurations whepkimize this metric score but may
not necessarily maximize the scores conferred by otherigaeiVe refer to this problem aystem
overtuning Some authors have tried to overcome this problem by defiaingy measures over
linear combinations of metrics (Hewavitharana et al., 20@&en et al., 2005). However, in these
cases, metric combinations are selected arbitrarily,tdhealeast, the criterion employed to select
them is either uncertain or ad-hoc.

In Section 6.3.3, we present a practical case study on thetefdf the metric selected to guide
the optimization process of our SMT system enhanced withiceeetl lexical selection models.
Specifically, we compare the results optimizing over BLEWhwespect to results optimizing over
a combination of lexical metrics on the basis of human lilksnén a joint effort with Lambert et al.
(2006), we conducted a similar study, in this case optingizive TALP N -gram based SMT system
(Marifio et al., 2006). Manual evaluations showed that dltisrnative leads to more robust system
configurations than relying on the BLEU measure alone.

Blind System Development

Automatic evaluation methods play, as discussed beforepyaimportant role in the context of MT
system development. Indeed, evaluation methods are npirapbrtant but they are also an upper
bound on the attainable success of the development prdse#fs in other words, improvements
may take place as long as developers count on mechanismsaguraeghem. Otherwise, the de-
velopment cycle is blind. A paradigmatic case of blind depetent occurred in the Johns Hopkins
University 2003 Summer Workshop dByntax for Statistical Machine Translation{Och et al.,
2003f. A team of leading researchers and motivated studentsehgoiveeks to improve a phrase-
based SMT system through the incorporation of syntactiovkedge. Although they suggested a
rich smorgasbord of syntax-based features, only a modergtevement (from 31.6% to 33.2%
according to BLEU) was attained, which, indeed, came alrarsiusively from using the IBM 1
model word alignment probabilities to compute a lexicalgiing feature function. They argued
two main reasons for this result. First, they observed thatastic parsers introduce many errors.
Second, and most important, they noted that the BLEU metrfiich they used for development
and test, was not able to capture improvements due to a Bgtitactic sentence structure.

For the sake of robustness, we argue that the developmdatroyst be alwaymetricwisei.e.,
the metric (or set of metrics) guiding the development pseaaust be able to capture the possible
quality variations induced by system modifications. WeHartdiscuss this issue in Chapter 6.

Shttp://www.clsp.jhu.edu/ws03/groups/translate/
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2.3 Human Evaluation

Manual evaluations present the main advantage of allowjiatgm developers to measure the qual-
ity of their systems over a wide range of partial aspects afityjuand over a set of potential end-
users. Several approaches to human evaluation have begasted) (Lehrberger & Bourbeau, 1988;
Falkedal, 1994; Arnold et al., 1994; Dabbadie et al., 2002}the following, we give an overview
on the most well known.

2.3.1 ALPAC Approach

One of the constituent parts of the ALPAC report (1966) wasidyscomparing different levels of
human translation with machine translation output, usimgnén subjects as judges. Two variables
were considered:

e Fidelity (or Accuracy) was a measure of how much information the laded sentence re-
tained compared to the original (on a scale of 0-9).

¢ Intelligibility was a measure of how ‘understandable’ the automatic tizmslaas (on a
scale of 1-9).

Each point on the scale was associated with a textual déserig-or example, 3 on the intel-
ligibility scale was described d&enerally unintelligible; it tends to read like nonsenseatpwith
a considerable amount of reflection and study, one can at legsothesize the idea intended by
the sentence” Intelligibility was measured without reference to thegamal, while fidelity was
measured indirectly. The translated sentence was presemtel after reading it and absorbing
the content, the original sentence was presented. Theguslgee asked to rate the original sen-
tence on informativeness. So, the more informative tharaigentence, the lower the quality of
the translation. The study showed that the fidelity and ligtbllity were highly correlated when
the human judgement was averaged per sentence. The vardetiong raters was small, but the
researchers recommended that, at least, three or fous steuld be used. The evaluation method-
ology managed to separate translations by humans fromdtems by machines with ease. The
study concluded thathighly reliable assessments can be made of the quality afduand ma-
chine translations”

2.3.2 ARPA Approach

As part of theHuman Language Technologies Progratine Advanced Research Projects Agency
(ARPA) created a methodology to evaluate machine translatystems (White et al., 1994; White,
1995). The evaluation program started in 1991, and corgitwéhis day. It involved testing several
systems based on different theoretical approaches (&tstisal, rule-based and human-assisted).
A number of methods for the evaluation of the output from ¢hegstems were tested in 1992 and
the most recent suitable methods were selected for inclusithe programs for subsequent years.
The evaluation measures were:

e Comprehension Evaluation. This method, also referred to adormativenessis intended
to directly compare systems based on the results from nfeultipoice comprehension tests,
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as in (Church & Hovy, 1993). It is, therefore, artrinsicevaluation measure. MT quality
is indirectly evaluated by having human subjects read aatically translated texts and then
answer several related questions.

e Quality Panel Evaluation. This method consisted in submitting translations to a pahel
expert native speakers who were professional translaldrs.evaluations were done on the
basis of a metric, modeled on a standard US government nusteit to rate human transla-
tions. The principal value of this approach was that the imetas externally motivated, since
it was not specifically developed for machine translatiorhif¢/et al., 1994). However, set-
ting up quality panel evaluations was very difficult in ternfdogistics, since they required
having a number of experts together in one place for severg.dFurthermore, reaching
consensus among experts was complicated. Therefore, dtiothwas abandoned.

e Adequacy and Fluency. A group of human subjects is required to judge a collection of
translations of one or more documents (LDC, 2005). Judgeprm@sented with a translation
segment, and asked to rate it for these two variables. Adggeders to the degree to which
information present in the original is also communicatedhi@ translation. It is intended
to capture translation fidelity. Fluency refers to the dedcewhich the target is well formed
according to the rules of the target language (usually Stahd/ritten English). Itis intended
to capture translation intelligibility.

These measures are very similar to fidelity andintelligibility measures used in the ALPAC
report (1966). In this case, however, scores are assesserliag to a 1-5 scale. A brief
interpretation of adequacy and fluency scores may be fouridlie 2.1. This technique
was found to cover the relevant parts of the quality panelueti@an, while, at the same
time, being easier to deploy, as it did not require experygudent. However, because these
measures operate at the sentence level they may fail toreagitcourse phenomena. Along
with informativeness, evaluation based on adequacy anddjuis these days the standard
methodology for the ARPA evaluation program

Score | Adequacy Fluency

5 All information | Flawless English
4 Most Good

3 Much Non-native

2 Little Disfluent

1 None Incomprehensible

Table 2.1: Interpretation of Adequacy and Fluency scores

e Preferred Translation. This measure has been proposed very recently. It consibisving
human subjects to perform pairwise system comparisonsaehtence-level, i.e., deciding
if output by a system ‘A’ is better, equal to, or worse thanpotioy a system ‘B’

"The evaluation plan corresponding to the 2008 NIST EvatnaGampaign is available attp://www.nist.
gov/speech/tests/mt/doc/MT08 _EvalPlan.v1.1.pdf
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2.3.3 Other Evaluation Measures

Other evaluation measures less commonly used are:

Meaning Maintenance. This measure intends to compare the meaning of the tramshaith
the source (Eck & Hori, 2005). It is similar to adequacy, althh it is more concerned with
the actual meaning of a translation. There is, however, la bigrelation between adequacy
and meaning maintenance. A brief interpretation of meanmagntenance scores may be
found in Table 2.2.

Score | Description

Exactly the same meaning

Almost the same meaning

Partially the same meaning and no new information

Partially the same meaning but misleading information tiotuced
Totally different meaning

oOFrLrNWA™

Table 2.2: Interpretation of Meaning Maintenance scores

Read Time. Reading time relates to the amount of time a potential useds¢o read a
document to aufficientlevel of understanding. It is essentially a time comprelmngest
(Slype, 1979).

Required Post-Editing. Minimum number of key strokes required to transform the enatic
translation into a valid translation.

Post-Edit Time. Time required to transform the automatic translation intalal translation.

Cloze Test.A test of readability based on measuring the ability of a eeaalfill in the blanks
after intentionally removing single words from the autoiméanslations (Slype, 1979). Sup-
posedly, it takes into account both fidelity and intelligjtipi

Clarity. Human raters are asked to score the clarity of each senterne®-@ scale (Vanni &
Miller, 2002). A brief description of clarity scores may kmuhd in Table 2.3.

Score | Description

3 Meaning of sentence is perfectly clear on first reading

2 Meaning of sentence is clear only after some reflection

1 Some, although not all, meaning is able to be gleaned from|the
sentence with some effort

0 Meaning of sentence is not apparent, even after some reflecti

Table 2.3: Interpretation of Clarity scores
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2.3.4 Problems of Human Evaluation

Human evaluation are very informative, but they presenemsgvimportant limitations. Human
evaluations are:

e Expensive (and slow).Human evaluations are labor-intensive and time-consuntigman
judges must often evaluate each automatic translationr@iogpto several quality criteria
(e.g., adequacy, fluency, etc.). As a result, current etialuaampaigns produce human
assessments only for a subset of systems and sentence®i($estance, Tables 3.5, 3.9 and
3.12, in Chapter 3, for a numerical description of seve@mhdard evaluation test beds from
recent MT evaluation campaigns). In addition, the numbelysfem variants allowed for each
participant to be selected for manual evaluation is typidahited to a primary submission.

e Not Reusable.While MT systems are dynamic components which may improvegtime,
human assessments are static, and therefore not reusalyleter®ms improve.

e Subjective. Human assessments are subjective; not only because diffadges may pro-
duce different quality assessments over the same testlmaisalso because they depend on
evaluation guidelines involving several quality critewdich may differ between evaluation
campaigns. Besides, assessors may consider additionalddge (e.g., about language,
about the world, etc.) which may be different among them.

e Possibly Partial. Most often, human assessments are limited to partial guailihensions
such as adequacy and fluency. Thus, it may well happen thatensyA' is judged to produce
more adequate outputs than a system ‘B’, while system 'Bldggd to produce more fluent
outputs. In this case it is not clear which system exhibigshighest overall quality. We could
either consider that adequacy is more important and thusAsaybest, or rely on fluency
thus preferring system ‘B’. Alternatively, we could coméidifferent quality aspects into a
single value. For instance, a common option is to use the duadenuacy and fluency as
a global measure of quality. However, in doing so we are iaithti considering that both
dimensions are equally important which may not be alwaysése.

2.4 Automatic Evaluation

In contrast to manual evaluations, automatic evaluatioadast (vs. slow), inexpensive (vs. ex-
pensive), objective (vs. subjective), and updatable (v&.reusable). Overall, automatic metrics
allow for fast numerical evaluations on demand, which isueiel aspect for their application in the
system development cycle:

e Error Analysis. Automatic evaluation allows researchers to perform inegpe and objec-
tive sentence-level evaluations, and, thus, identify lemlatic cases requiring improvement.

e System Comparison. Automatic evaluation allows for fast comparisons betwekierent
systems, or between different versions of the same systgte(s-level evaluation).
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e System Optimization. Automatic evaluation allows system developers to adjustesy pa-
rameters without having to elaborate expensive human smssess for each of the possible
system configurations.

However, automatic evaluations are partial and often @elvtii shallow aspects of quality (e.g.,
lexical similarity). In addition, as discussed in the begny of the chapter, the significance of
automatic evaluations depends very strongly on the avtijabf a heterogeneous set of reference
translations.

A large number of metrics, based on different similaritytemia, have been suggested in the
last decade. Most are based on comparisons between awt@ndthuman reference translations.
There exist, as well, several approaches to MT evaluatidhowt human references (Quirk, 2004;
Gamon et al., 2005; Albrecht & Hwa, 2007b). In the followimgg provide an overview of the most
well-known approaches to automatic MT evaluation. We iggtish between metrics which limit
their scope to the lexical dimension and those which comgiutdarities at deeper linguistic levels.

2.4.1 Metrics based on Lexical Matching

Metrics based on computing lexical similarities (also ealh-gram based metrics), are today the
dominant approach to automatic MT evaluation. These nseltdwe demonstrated a notable ability
to emulate the behavior of human evaluators over a varietyaifiation scenarios (Coughlin, 2003).
All work by rewarding lexical similarity f©-gram matchings) among the system output and a set
of reference translations. The main differences are mtledeghe calculation of lexical similarity.
Below, we briefly describe the most popular, grouped acogrth the type of measure computed.

Edit Distance Measures

These measures provide an estimate of translation quaigdon the number of changes which
must be applied to the automatic translation so as to tramstanto a reference translation:

e WER. Word Error Rate (Nief3en et al., 2000). This measure is basd¢keoLevenshtein dis-
tance (Levenshtein, 1966) —the minimum number of subkgiitat deletions and insertions
that have to be performed to convert the automatic traonslatito a valid translation (i.e., a
human reference).

e PER. Position-independent Word Error Rate (Tillmann et al., M9A shortcoming of the
WER measure is that it does not allow reorderings of words.ortter to overcome this
problem, the position independent word error rate (PER)p=aoes the words in the two
sentences without taking the word order into account.

e TER. Translation Edit Rate (Snover et al., 2006). TER measueeaitiount of post-editing
that a human would have to perform to change a system outpuéesactly matches a refer-
ence translation. Possible edits include insertionstidele and substitutions of single words
as well as shifts of word sequences. All edits have equal cost
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Precision-oriented Measures

These metrics compute lexical precision, i.e., the praporbf lexical units (typicallyn-grams of
varying size) in the automatic translation covered by ttieresce translations:

e BLEU. Bilingual Evaluation Understudy (Papineni et al., 2001hisTmetric computes-
gram lexical precision among-grams up to length 4.

e NIST. Animproved version of BLEU by the National Institute of Stiands and Technology
(Doddington, 2002). The main difference with BLEU is in thaywof averagingz-gram
scores. While BLEU relies on a geometric mean, NIST perfoamarithmetic mean. Also
NIST takes into account-grams up to length 5. In addition, NIST weights more heavily
n-grams which occur less frequently, as an indicator of thiginer informativeness.

e WNM. A variant of BLEU which weightsa-grams according to their statistical salience
estimated out from a large monolingual corpus (Babych & ldgr2004).

Recall-oriented Measures

These metrics compute lexical recall, i.e., the proportiblexical units in the reference translations
covered by the automatic translation:

¢ ROUGE. Recall-Oriented Understudy for Gisting Evaluation (Lin &I 2004a). ROUGE
computes lexical recall amonggrams up to length 4. It also allows for considering stem-
ming and discontinuous matchings (skip bigrams).

e CDER. Cover/Disjoint Error Rate; a recall-oriented measure ningeblock reordering
(Leusch et al., 2006). Based on theDC D distance introduced by Lopresti and Tomkins
(1997), CDER models movement of word blocks as an edit ojperat

Measures Balancing Precision and Recall

These metrics combine lexical precision and recall:

e GTM. An F-measure (Melamed et al., 2003; Turian et al., 2003). ifmortance of the
length ofn-gram matchings may be adjusted.

e METEOR. An F-measure based on unigram alignment (Banerjee & Layle5R ME-
TEOR also includes a fragmentation score which accountsvéwd ordering. Besides, it
allows for considering stemming and synonymy lookup bagedordNet (Fellbaum, 1998).

e BLANC. A family of trainable dynamia:-gram based evaluation metrics (Lita et al., 2005).
Their algorithm performs an efficient full overlap searclkeiovariable-size non-contiguous
word sequences, with the particularity that it can be o@adifor highest agreement with
human assessments.
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e SIA. Stochastic Iterative Alignment, a metric based on looselisece alignment but en-
hanced with alignment scores, stochastic word matchingaaniterative alignment scheme
(Liu & Gildea, 2006).

2.4.2 The Limits of Lexical Similarity

The use ofV-gram based metrics in the context of system developmentpassented a significant
advance in MT research in the last decade. Indeed, thesesnetparticularly BLEU— have been
widely accepted by the SMT research community as a ‘de fettidard evaluation procedure.
However, they have also received many criticisms (Culy &ieimann, 2003; Turian et al., 2003;
Zhang et al., 2004; Zhang & Vogel, 2004; Callison-Burch et 2006; Koehn & Monz, 2006).
For instance, Culy and Riehemann argue that altheugham based metrics may correlate reliably
with human rankings based on adequacy and fluency, they edsem several deficiencies: {i)
gram based metrics rely on a flawed model of translationp{gyam based metrics over-rate SMT
systems, and (iii) poor reference translations tend to @avgpn-gram based scores.

The problem withn-gram based metrics is that, rather than translation quadéasures, they
are indeed document similarity measures. Their value asunes of translation goodness comes
from the assumption that a good translation of a text will ingilar to other good translations of
the same text. Unfortunately, this assumption may not awemtd. Although highh-gram scores
are indicative of high translation quality, lomrgram scores are not necessarily indicative of poor
translation quality.

Another weakness of-gram metrics is that their reliability depends very stigran the num-
ber of reference translations available. As explained ictiSe 1.1.1, natural languages allow for
many different ways of expressing the same idea. In ordeapbuce this flexibility a very large
number of human reference translations would be requiredfortlinately, in most cases only a
single reference translation is available. Besides, itifsal to control the type of translation repre-
sented by the reference translations (e.g., style, litgratc.). Overall, Culy and Riehemann (2003)
found that there is a complex relationship between accéipyaperceived by lexical metrics and
the suitability of the output. In their opiniom,-gram based metrics should be recalibrated for each
language pair and text type.

Finally, lexical metrics are not well suited for senteneeell error analysis. For instance, Turian
et al. (2003) criticize the applicability of BLEU. First, t&use it does not have a clear interpreta-
tion. Second, because it punishes very severely transtatuith a low level of.-gram matching —at
least one 4-gram must be shared with a reference translatibarwise BLEU score is 0. Third,
because in order to punish candidate translations thabarleng/short, BLEU computes a heuris-
tically motivated brevity penalty factor.

As an example on the limits of-gram based metrics for sentence-level evaluation, Taldle 2
shows a particular case of Spanish-to-English transldtiowhich incorrect translations receive
higher scores than correct ones. Observe how highest samesbtained by outpuB’, which
is wrong and nonsense. In contrast, outt which conveys most of the meaning of the input,
attains much lower scores. As to outp@t, which is completely valid, and in which only the first
word is changed with respect to outpét, it receives a dramatic null BLEU score.
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Source Text | la casa verde estaba situada justo delante del lago .
Reference | the green house was right in front of the lake .

BLEU | GTM | NIST
Output A the green house was by the lake shore . 0.30| 0.70| 2.29
Output B the green potato right in front of the lake was right. 0.52| 0.87| 2.90
Output C a green house was by the lake shore . 0.00| 0.60| 1.96

Table 2.4: An example on the deficienciesefram based metrics

2.4.3 Beyond Lexical Similarity

Having reached a certain degree of maturity, current MTrieldgy requires nowadays the usage of
more sophisticated metrics. In the last few years, sevembaches have been suggested. Some of
them are based on extending the reference lexicon. Fonrest&OUGE and METEOR allow for
morphological variations by applying stemming. AddititpaMETEOR may perform a lookup
for synonymy in WordNet (Fellbaum, 1998). Others have satggetaking advantage of paraphras-
ing support (Russo-Lassner et al., 2005; Zhou et al., 20@6icKak & Barzilay, 2006; Owczarzak
et al., 2006).

But these are still attempts at the lexical level. At a dedipguistic level, we may find, for
instance, the work by Liu and Gildea (2005) who introducedrées of syntax-based metrics. They
developed the Syntactic Tree Matching (STM) metric basedomstituency parsing, and the Head-
Word Chain Matching (HWCM) metric based on dependency pgrdAlso based on syntax, Mehay
and Brew (2007) suggested flattening syntactic dependenaly in the reference translations so as
to compute string-based similarities without requiringntagtic parsing of the possibly ill-formed
automatic candidate translations. We may find as well thekviogr Owczarzak et al. (2007a;
2007b) who presented a metric which compares dependenmists according to a probabilistic
Lexical-Functional Grammar. They used paraphrases as Wair metric obtains very competitive
results, specially as a fluency predictor. Other authore lilmsigned metrics based on shallow-
syntactic information. For instance, Popovic and Ney (2@0@posed a novel method for analyzing
translation errors based on WER and PER measures compuediitfierent parts of speech. At
the semantic level, prior to the work presented in this boaok know only about théNEE' metric
defined by Reeder et al. (2001), which was devoted to meastirgudlity over named entitiés

The need for improving the performance of current metricdde reflected by the recent orga-
nization of two evaluation shared tasks:

1. The evaluation shared-task at th€L 2008 Third Workshop On Statistical Machine Trans-
lation (WMT’08)°. After the 2007 pilot experiment, this year, a separateeshsask on
automatic MT evaluation has been officially set up.

2. The“NIST Metrics MATR Challenge 20082 organized by NIST in the context of tfgth
Conference of the Association for Machine Translation eAmericas (AMTA)

8The ‘NEE’ metric is similar to théNE-M_-+" metric described in Section 3.1.5.
®http://www.statmt.org/wmt08/
Ohttp://www.nist.gov/speech/tests/metricsmatr/
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In Chapter 3, we present a very rich set of metrics operatimiffarent linguistic levels, from
the lexical, through the syntactic, and up to the level of aathantics. These metrics are suc-
cessfully applied to the evaluation of heterogeneous sysend to the generation of detailed error
analysis reports.

2.4.4 Metric Combinations

Integrating the scores conferred by different metrics angle measure seems the most natural
and direct way to improve over the individual quality of amt metrics. This solution requires two
important ingredients:

Combination Strategy, i.e., how to combine several metric scores into a singleesct¥e dis-
tinguish betweemparametricandnon-parametricapproaches. In parametric approaches the
contribution of each metric to the global score is individjuaveighted through an associated
parameter. In contrast, in the non-parametric case, matntribution is based on a global
non-parameterized criterion.

Meta-Evaluation Criterion, i.e., how to evaluate the quality of a metric combination. e
have seen in Section 2.2.2, there exist at least two differeta-evaluation criteria: human
likeness (i.e., the metric ability to discern between awtticnand human translations) and
human acceptability (i.e., correlation with human assesgs).

In the following, we describe the most relevant approachasdtric combination. All imple-
ment aparametric’ combination strategy. The main difference between theskads can be found
in the meta-evaluation criterion underlying. We distirglubetween approaches relying on human
likeness and approaches relying on human acceptability.

Approaches based on Human Likeness

The first approach to metric combination based on humandi®&mwas that by Corston-Oliver et al.
(2001) who used decision trees to distinguish between htgearrated (‘good’) and machine-
generated (‘bad’) translations. They suggested usingifirsconfidence scores directly as a quality
indicator. High levels of classification accuracy were ot#d. However, they focused on evaluating
only the well-formedness of automatic translations (sehaspects of fluency). Preliminary results
using Support Vector Machines were also discussed.

Kulesza and Shieber (2004) extended the approach by Cetdieer et al. (2001) to take
into account other aspects of quality further than fluenonal Instead of decision trees, they
trained Support Vector Machines (SVM). They used featunspired by well-known metrics such
as BLEU, NIST, WER, and PER. Metric quality was evaluatechtiatterms of classification
accuracy and in terms of correlation with human assessnagrkee sentence level. A significant
improvement with respect to standard individual metrics vegorted.

Gamon et al. (2005) presented a similar approach which,ditiad, had the interesting prop-
erty that the set of human translations was not required t@spond, as references, to the set of
automatic translations. Instead of human references,ubeg a language model estimated from a
target-language corpus of the same domain.
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Approaches based on Human Acceptability

In a different research line, Akiba et al. (2001) suggestegictly predicting human scores of ac-
ceptability, approached as a multiclass classificatiok theey used decision tree classifiers trained
on multiple edit-distance features based on combinatidriexacal, morphosyntactic and lexical
semantic information (e.g., word, stem, part-of-speectd semantic classes from a thesaurus).
Promising results were obtained in terms of local accuraey an internal predefined set of overall
quality assessment categories

Quirk (2004) presented a similar approach, also with the tairmpproximate human quality
judgements, with the particularity that human referencesewnot required. It relied only on human
assessments They defined arich collection of features, extracted by tyatax-based MT system
itself (Quirk et al., 2005). These were grouped in threegmies: (i) features related to the source
sentence and how difficult it was to parse, (ii) features aloa translation process itself, (iii)
features accounting for the proportion of words and sufig$rcovered by the training corpus. They
applied a variety of supervised machine learning algoritiieng., Perceptron, SVM, decision trees,
and linear regression). All proved very effective, attagnhigh levels of accuracy, with a significant
advantage in favor of linear regression. However, expartmeere run on automatic outputs by a
single MT system, so it is not clear how well these would galies.

Recently, Paul et al. (2007) extended these works so as twactor separate aspects of qual-
ity: adequacy, fluency and acceptability. They used SVMsifi@ss to combine the outcomes of
different automatic metrics at the lexical level (BLEU, NISMETEOR, GTM, WER, PER and
TER). Their main contribution is on the variety of schemesythpplied to binarize the multiclass
classification problem (one-vs-all/all-pairs/boundbgsed), and how the outcome by distinct clas-
sifiers is combined so as to decide on the final prediction.

Also very recently, Albrecht and Hwa (2007a; 2007b) re-exeu the SVM-classification ap-
proach by Kulesza and Shieber (2004) and Corston-Olivek. ¢2@01) and, inspired by the work
of Quirk (2004), suggested a regression-based learningbapip to metric combination, with and
without human references. Their SVM-based regression hedms a continuous function that
approximates human assessments in training examples.uskeyfour kinds of features: (i) string-
based metrics over references (BLEU, NIST, WER, and PER, B84hspired, METEOR-
based), (ii) syntax-based metrics over references, {iilgbased metrics over a large corpus, and
(iv) syntax-based metrics over a large corpus. Their resultperformed those by Kulesza and
Shieber (2004) in terms of correlation with human assestsndBesides, their method is shown
to generalize reasonably well across different evaluagimenarios. They conducted two general-
ization studies: (i) on how well the trained metrics evadusystems from other years and systems
developed for a different source language, and (ii) on havatians in the set of training examples
affect the metric’s ability to generalize to distant system

In a different approach, Ye et al. (2007) suggested appmgaentence level MT evaluation
as a ranking problem. They used the Ranking SVM algorithnotbcandidate translation on the

1(A) Perfect: no problems in both information and grammai), KBir: easy-to-understand, with either some unim-
portant information missing of flawed grammar, (C) Accefgalbroken, but understandable with effort, (D) Nonsense:
important information has been translated incorrectly.

2pssessments were based on a 1-4 scale similar to overaitygoalegories used by Akiba et al. (2001). (4) Ideal,
(3) Acceptable, (2) Possibly Acceptable, (1) Unacceptable
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basis of several distinct features of three different typegyram based, dependency-based, and
translation perplexity according to a reference languagdeh A slight but significantly improved
correlation with fluency human assessments was reported.

As an alternative to machine learning techniques, Liu arldegai(2007) suggested a simpler
approach based on linear combinations of metrics. Thegvi@ltl aMaximum Correlation Training
i.e., the weight for the contribution of each metric to them@ll score was adjusted so as to maximize
the level of correlation with human assessments at the rsemievel. They showed this approach
to significantly outperform that of Kulesza and Shieber @0 terms of correlation with human
assessments.

All the methods described above implement a parametric gwatibn scheme. In Section 3.4,
we present @aon-parametricalternative approach to metric combination in which metece com-
bined without any a priori weighting of their relative impance.



Chapter 3

Towards Heterogeneous Automatic MT
Evaluation

As discussed in Section 2.2.3, evaluation methods maydat® a bias in the development cycle
of MT systems, which may cause serious problems. In ordeveéocome the metric bias problem,
instead of relying ompartial metrics, system developers should relygbobal evaluation methods,
i.e., methods which could take into account a wide range afityuaspects.

Doubtless, the design of a golden metric that is able to cagtiithe quality aspects that distin-
guish correct translations from incorrect ones is an amistand difficult goal. Instead, we suggest
following a divide and conquestrategy. For that purpose, we have compiled a heterogsrssiu
of specialized metrics, devoted to capture partial aspddT quality at different linguistic levels:
lexical, syntactic, and semanticOur goal is twofold: (i) to verify that partial metrics atfidirent
linguistic levels capture relevant and complementary gseaf information, and, are, thus, useful
for the purpose of automatic MT evaluation, and (i) to stinyv to combine the scores conferred
by different metrics into a single measure of quality.

The rest of the chapter is organized as follows. First, iniBe@.1, we present the rich set of
metrics employed in our experiments. These metrics aréeapph Section 3.2, to the evaluation of
MT systems over different scenarios. We show how indivigoetrics based on deeper linguistic in-
formation are able to produce more reliable system rankimgs metrics based on lexical matching
alone, specially when the systems under evaluation areréiff in nature. These metrics present,
however, an important shortcoming: they rely on automatiguistic processors which are prone to
errof. Thus, it could be argued that their performance would dezrevhen applied to low-quality
translations. In order to clarify this issue, in Section, 3v8 study the performance of syntactic and
semantic metrics in the extreme evaluation scenario ofcépespeech translation between non-
related languages. We show that these metrics exhibit arebrst behavior at the system level,
whereas at the sentence level some of them suffer a sigrifie@mnease. In Section 3.4, we study
the viability of working on metric combinations. We show ttmen-parametric schemes provide

1A complete list of metrics is available in Appendix C.
%A description of the tools utilized and related tag sets &lable in Appendix B.

35
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a robust means of combining metrics at different linguistieels, effectively yielding a signifi-
cantly improved evaluation quality at the sentence levelaZomplementary issue, in Section 3.5,
we show how the heterogeneous set of metrics can be alsosstidbe applied to error analysis.
Finally, in Section3.6, main conclusions are summarizetifature work is outlined.

3.1 A Heterogeneous Set of Metrics

For our study, we have compiled a rich set of metric variah&different linguistic levels (lexical,
shallow-syntactic, syntactic, shallow-semantic and sgima We have resorted to several existing
metrics, and we have also developed new ones. Although fiffereht viewpoints, and based on
different similarity assumptions, in all cases, transiatguality is measured by comparing auto-
matic translations against a set of human reference ttaorsda In the following subsections, we
provide a description of the metrics according to the lisgjailevel at which they operate.

3.1.1 Lexical Similarity

We have included several variants from different standagttios (e.g., BLEU, NIST, GTM, ME-
TEOR, ROUGE, WER PER and TEﬁBeIow we list all the variants included in our study:

e BLEU-n | BLEUi-n: Accumulated and individual BLEU scores for sevetagram levels
(n = 1...4) (Papineni et al., 2001). We use version ‘11b’ of the NIST Malaation kit for
the computation of BLEU scores. Seven variants are computed

e NIST-n | NISTi-n: Accumulated and individual NIST scores for severajiram levels
(n = 1...5) (Doddington, 2002). We use version ‘11b’ of the NIST MT aatlon kit for the
computation of NIST scores. Nine variants are computed

e GTM-e: General Text Matching F-measure (Melamed et al., 2003). ¥¢eGiTM version
1.4. Three variants, corresponding to different valuehektparameter controlling the re-
ward for longer matchings:(c {1,2,3}), are computed.

e METEOR: We use METEOR version 0.6. (Banerjee & Lavie, 2005). Fouraves are
computed:

— METEOR gxact — running ‘exact’ module.

— METEORgtem — running ‘exact’ and ‘portesstem’ modules, in that order. This vari-
ant considers morphological variations through the Patemnmer (Porter, 2001).

— METEOR wnstm — funning ‘exact’, ‘porterstem’ and ‘wnstem’ modules, in that
order. This variant includes morphological variationsaitéd through WordNet (Fell-
baum, 1998).

3The list of the variants selected is also available in Table C

“The NIST MT evaluation kit is available &ttp://www.nist.gov/speech/tests/mt/scoring/

SWe use ‘BLEU’ to refer to the ‘BLEU-4' variant. ‘BLEU-1' andBLEUi-1' refer to the same metric varlant
5We use ‘NIST’ to refer to the ‘NIST-5' variant. ‘NIST-1’ andNISTi-1' refer to the same metric variant.
"We use ‘METEOR’ to refer to the ‘METEOR,sy.’ Variant.
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— METEOR ywnsyn — running ‘exact’, ‘porterstem’, ‘wn.stem’ and ‘wnsynonymy’
modules, in that order. This variant performs a lookup faragsyms in WordNet.

e ROUGE: We use ROUGE version 1.5.5 (Lin & Och, 2004a). We considerpimalogical
variations through stemming. Options are ‘-z SPL -2 -1 -U 000 -n 4 -w 1.2 -¢ 95 -d'.
Eight variants are computed:

— ROUGE-n — for severalh-gram lengths: = 1...4)

— ROUGE}, — longest common subsequence (LCS).

— ROUGEg, — skip bigrams with no max-gap-length.

— ROUGEgy 4+« — skip bigrams with no max-gap-length, including unigrams.

— ROUGEw — weighted longest common subsequence (WLCS) with weigtéatpr
w = 1.2.

e WER: Word Error Rate. We use — WER (Niel3en et al., 2000).
e PER: Position-independent Word Error Rate. We tise PER (Tillmann et al., 1997).

e TER: Translation Edit Rate. We ude— TER (Snover et al., 2006).

3.1.2 Beyond Lexical Similarity

Itis an evidence that MT quality aspects are diverse. Howevetric families listed in Section 3.1.1
limit their scope to the lexical dimension. This may resaf,discussed in Section 2.2.3, in unfair
evaluations. For instance, let us show in Table 3.1, a real eatracted from the NIST 2005 Arabic-
to-English translation exerci&eA high quality translation (by LinearB system) accordinditiman
assessments (adequacy =4/ 5, fluency =4/ 5) unfairly atsaios BLEU score (BLEU = 0.25).
This is due to the low level of lexical matching. Fromatgrams up to length four in the automatic
translation only one 4-gram out of fifteen, two 3-grams ougigteen, five 2-grams out of seventeen,
and thirteen 1-grams out of eighteen can be found in at leasteference translation. Table 3.2
shows, for thesea-grams in decreasing length order, the number of refergacslations in which
they occur.

The main problem with metrics based only on lexical similesiis that they are strongly depen-
dent on the sublanguage represented by the set of humaenedésravailable. In other words, their
reliability depends on the heterogeneity (i.e., represesity) of the reference translations. These
may in its turn depend not only on the number of referenceaspibtheir lexica, grammar, style, etc.
Besides, while similarities between two sentences canpkae at deeper linguistic levels, lexical
metrics limit their scope to the surface. We believe that gligt use of linguistic information
could be very beneficial. Besides, current NLP technologynal for automatically obtaining such
information.

Thus, we argue that the degree of overlap at more abstraas lsva far more robust indicator
of actual MT quality. For instance, Figure 3.1 comparesmatically obtained syntactico-semantic

8The case corresponds to sentence 498 in the test set.
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LinearB  OnTuesdayseveralmissilesandmortar shells fell in southern Israel, but there
wereno casualties.

Ref 1 SeveralQassam rocketsandmortar shells werefired on southern Israel today
Tuesday without victims.

Ref 2 SeveralQassam rocketsandmortars hit southern Israel todaywithout causing
any casualties.

Ref 3 A number ofQassam rocketsandHowitzer missiles felloversouthern Israel
today ,Tuesday, without causing any casualties

Ref 4 SeveralQassam rocketsandmortar shells fell today ,Tuesday, onsouthern
Israel without causing any victim .

Ref 5 SeveralQassam rocketsandmortar shells fell today ,Tuesday, in southern
Israel without causing any casualties

Subject  Qassam rockets / Howitzer missiles / mortar shells

Action fell / were fired / hit

Location southern Israel

Time Tuesday (today)

Result no casualties / victims

Table 3.1: NIST 2005 Arabic-to-English. A Case of Analysisritence #498)

n-gram #occ | n-gram #occ | n-gram  #occ
and mortar shells fell 2 casualties . 3 shells 3
and mortar shells 3 on 2| fell 3
mortar shells fell 2| Tuesday 4| southern 5
and mortar 3| several 4| Israel 5
mortar shells 3 missiles 1|, 3
shells fell 2| and 4| casualties 3
southern Israel 5 mortar 3 5

Table 3.2: NIST 2005 Arabic-to-English. A Case of Analysisritence #498). Lexical matching
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representations for the automatic translation in the previexample (top) and reference #5 (bot-
tom)°. In first place, with respect to syntactic similarity, netithat a number of subtrees are shared
(particularly, noun phrases and prepositional phraselsp Aotice that the main verbal form (‘fell’)

is shared. As to the semantic roles associated, predicabeh sentences share several arguments
(A1, AM-TMP, and AM-LOC) with different degrees of lexicalerlap. All these features, that are
making the difference in this case, are invisible to shaltogtrics such as BLEU.

Linguistic Elements

Modeling linguistic features at deeper linguistic levalguires the usage of more complex linguistic
structures. We will refer to linguistic units, structures,relationships abnguistic element$LES).
Possible kinds of LEs could be, for instance, word formstspaf speech, dependency relations,
syntactic constituents, named entities, semantic roisspdrse representations, etc. A sentence,
thus, may be seen as a bag of LEs. Each LE may consist, in itsdtione or more LES, which
we call items inside the LE. For instance, a phrase constituE may consist of part-of-speech
items, word form items, etc. LEs may also consist of comlppmatof items. For instance, a phrase
constituent LE may be seen as a sequence of ‘word-formafaspeech’ items.

Hovy et al. (2006) defined a similar type of linguistic sturets, so-called basic elements (BES),
for the evaluation of automated summarization systemsir finethod consisted in breaking down
reference sentences into sets of BEs before comparingnsysigputs against them. However, in
contrast to LEs, they limited the information captured bysB& the syntactic level, whereas LEs
allow for representing any kind of linguistic informatiohus, BEs could be actually seen as a
particular case of LEs.

Similarity Measures over Linguistic Elements

We are interested in comparing linguistic structures, arglistic units. LEs allow for comparisons
at different granularity levels, and from different viewpis. For instance, we might compare the
syntactic/semantic structure of two sentences (e.g.,iwiechs, semantic arguments and adjuncts
exist) or we might compare lexical units according to thetagtic/semantic role they play inside
the sentence. We use two very simple kinds of similarity messover LEsOverlapandMatch-

ing. Below, we provide general definitions which will be insiatéd over particular cases in the
following subsections:

e Overlap between items inside LEs, according to their ty@eserlap provides a rough mea-
sure of the proportion of items inside elements of a cerigie that have been successfully
translated. Formally:

®Part-of-speech and syntactic notation are based on the Reahank (Marcus et al., 1993). Notation for semantic
roles is based on the Proposition Bank (Palmer et al., 200®)distinguish semantic roles associated to differents/erb
by indexing them with the position the related verb wouldumcin a left-to-right list of verbs, starting at position 1.
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PP(AM-TMP), S

N

on NP NP (A1) VP
Tuesday several missiles.fell >; PPawm-Loc), NP VP
and /\ ‘ /\
mortar shells in NP there  were NP

N, N

southern Israel no casualties
S
NP (A1), (AO) VP
Np and NP <fell>; NP PP(AM-LOC),  PP(AM-ADV),
Several Qassammortar shells NRAM-TMP), , NP , in NP without S
rockets ‘ ‘ ‘
today Tuesday southern Israel VP

N

<causing>; NP (A1),

any casualties

Figure 3.1: NIST 2005 Arabic-to-English. A Case of Analygéentence #498). Syntactico-
semantic Representation
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Z countyyyp (i,t)

i€ (itemsy (hyp) N itemsy (ref))

Z max(countpyy (4, t), countyef (i, t))
1€ (items¢ (hyp) U itemsg (ref))

Overlap(t) =

wheret is the LE type, hyp’ and ‘ref’ refer, respectively, to the candidate and reference
translationsijtems, (s) refers to the set of items occurring inside LEs of type sentence,
andcountg(i,t) denotes the number of timégppears in sentencenside a LE of type. LE
types vary according to the specific LE class. For instamc#e case of the ‘named entity’
class, types may be ‘PER’ (i.e., person), ‘LOC’ (i.e., loga}, ‘ORG’ (i.e., organization),
etc. In the case of the ‘semantic role’ class, types may bé (i€, prototypical subject),
‘AM-TMP’ (i.e., temporal adjunct), ‘AM-MNR’ (i.e., manneadjunct), etc.

We also introduce a coarser metric, Overgphich considers the averaged overlap over all
types:

Z Z countpyp (4,t)

teT ic(itemst (hyp) N itemsy (ref))

Z Z max(countpyy (4, t), countyef (i, t))

teT ic(items; (hyp) U itemsy (ref))

Overlap(*) =

whereT is the set of all LE types associated to the given LE class. iristance, we may
define a metric which computes average lexical overlap oVeeeantic roles types. This
would roughly estimate to what degree translated lexieah# play the expected semantic
role in the context of the full candidate sentence.

e Matching between items inside LEs, according to their tyjts definition is analogous to
the Overlap definition, but in this case the relative ordethefitems is important. All items
inside the same element are considered as a single unit(&equence in left-to-right order).
In other words, we are computing the proportion of fully skted elements, according to
their type. Formally:

Z countpyp (e, t)

ec(elemst(hyp) N elemsq(ref))

Z max(countpyp (e, t), countyet(e, t))
ec(elemst(hyp) U elems¢(ref))

Matching(t) =

wheret is the LE type, an@lems,(s) refers to the set of LEs (as indivisible sequences of
consecutive items) of typein sentences.
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As in the case ofOverlap’, we introduce a coarser metric, Matchirg(which considers the
averaged matching over all types:

Z Z countpyp (e, t)

teT ec(elems(hyp) N elemsy(ref))

Z Z max(countpyy, (e, t), countyf(e, t))

tET ec(elemsy(hyp) U elemsy(ref))

Matching(*) =

Notes on Overlap/Matching Measures

1. Overlap and Matching operate on the assumption of a siatgeence translation. The reason

is that, when it comes to more abstract levels, LEs insidesdmee sentence may be strongly
interrelated, and, therefore, similarities across refegetranslations may not be a reliable
quality indicator. The extension to the multi-referenctisg is computed by assigning the
maximum value attained over all human references indivigua

. Overlap and Matching are general metrics. We may applgn ttee specific scenarios by

defining the class of linguistic elements and items to be .usedubsections 3.1.3 to 3.1.6,
these measures are instantiated over several particgas.ca

. As to abbreviated nomenclature, the first two letters afime@ames identify the LE class,

which indicates the level of abstraction at which they ofeertn this document, we use ‘SP’
for shallow parsing, ‘DP’ for dependency parsing, ‘CP’ famstituency parsing, ‘NE’ for
named entities, ‘SR’ for semantic roles, and ‘DR’ for disg®irepresentations. Then, we
find the type of similarity computed. Overlap and Matchingaswes are represented by the
‘O’ and ‘M’ symbols, respectively. Additionally, these slmls may be accompanied by a
subindex representing the type of LEs and items employedinBt@nce, ‘SRO,;-x’ operates

at the level of semantic roles (SR), and represents averagdapping amongdxical items
according to theirale. If the LE and item types are not specified, it is assumatittie metric
computes lexical overlap over the top-level items ava@aBlor instance, these are also valid
names for the ‘SR9,;-x" metric. ‘SR-O,-x", ‘SR-0O;-x", and ‘SR-O-x". In the following
sections and chapters, we use ‘BR-x" equivalent, and similarly for other metrics and LE
classes.

Lexical Overlap

We instantiate the overlap measure at the lexical level diyiohg the O;’ metric, which computes
lexical overlap directly over word forms. As an example, [€aB.3 shows the computation of
the ‘O;’ score for the case depicted in Figure 3.1, as compared toalegrecision, recall and F-
measure.A and H denote, respectively, the automatic translation and tmeamureference. Text
has been lower cased. It can be observed that lexical ovislapleed, just another simple method
for balancing precision and recall.
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A ontuesday severaimissilesand mortar shells fell in southern israel ,but there
were nocasualties .
H severalgassam rocketand mortar shells fell today ,tuesday , in southern israel
without causing angasualties .
AN H = { 'tuesday’, ‘several’, ‘and’, ‘mortar’, ‘shells’, ‘fell’'in’, ‘southern’, ‘israel’, *,,
‘casualties’, ‘. }
AUH = {'on’, tuesday’, ‘several’, ‘missiles’, ‘and’, ‘mortar’shells’, ‘fell’, ‘in’, ‘southern’,
‘israel’, ‘), ‘but’, ‘there’, ‘were’, ‘no’, ‘casualties’, ‘., ‘gassam’, ‘rockets’, ‘today’,

;, ‘without’, ‘causing’, ‘any’ }

Table 3.3: Lexical overlap score for the case from Table 3.1

An Example Beyond the Lexical Level

Table 3.4 shows an example on how to compute average lextealap among semantic roles,
i.e., SRO,-(x), for the case depicted in Figure 3.1. The semantic role éatmdtected one argu-
ment (‘Al;’) and two adjuncts (AM-TMR’ and ‘AM-LOC’) in the automatic translation, whereas
three arguments (‘Al), ‘A0 ', and ‘Aly’) and three adjuncts (AM-TMP, ‘AM-LOC ;' and ‘AM-
ADV ;) were detected for the human reference. Associated LEesgmtations are showed for each
LE type. We also provide individual lexical overlap scorasg average overlap.

3.1.3 Shallow Syntactic Similarity

Metrics based on shallow parsin§R) analyze similarities at the level of parts of speech (PoS),
word lemmas, and base phrase chunks. Sentences are aotyatinotated using the SVMTool
(Giménez & Marquez, 2004b), Freeling (Carreras et alg42@nd Phreco (Carreras et al., 2005)
linguistic processors, as described in Appendix B, Sedidn We instantiate ‘Overlap’ over parts
of speech and chunk types. The goal is to capture the propasfilexical items correctly translated,
according to their shallow syntactic realization. Two nosthave been defined:

SP-O,-t Lexical overlap according to theap-of-speecht’. For instance,'SP-O,-NN’ roughly
reflects the proportion of correctly translated singulanns) wherea&sP-0,-VBN' reflects
the proportion of correctly translated past participlese &0 define thesP-O,-+" metric,
which computes the average lexical overlap over all parspegéch.

SP-O.-t Lexical overlap according to the base phrabark type t'. For instance,SP-O.-NP’,
and‘SP-O.-VP’ respectively reflect the successfully translated proportf noun and verb
phrases. We also define tt&P-O.-+' metric, which computes the average lexical overlap
over all chunk types.
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Apq = { 'several’, ‘missiles’,'and’, ‘mortar’ , ‘shells’ }
Haq = { ‘'several’, ‘gassam’, ‘rockets, ‘and’, ‘mortar’, ‘shellsany’, ‘casualties’}

Hao = { ‘several’, ‘gassam’, ‘rockets, ‘and’, ‘mortar’, ‘shell§’
AAM-TMP = {‘on’, ‘tuesday’ }

Ham-Tmp = { ‘today’ }

AaM-LOC = {'in", ‘'southern’, ‘israel’ }

Ham-Loc = { in’, ‘southern’, ‘israel’ }

Aam-ADv =0

Ham-ADY = { ‘without’, ‘causing’, ‘any’, ‘casualties’}
SRO, (A1) =2

SR-O,(A0) = 8

SR-O,(AM- TMP) =9

SR-O,(AM-LOC) = g

SR-O,(AM-ADV) = %

_ 440404340 _ 7
SRO: (%) = gigiatats = %

Table 3.4: Average semantic role (lexical) overlap scoretfe case from Table 3.1
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At a more abstract level, we use the NIST metric (Dodding@002) to compute accumu-
lated/individual scores over sequences of:

SP-NIST(i)-n Lemmas.
SP-NIST(i),-n Parts of speech.
SP-NIST(i).-n Base phrase chunks.

SP-NIST(i);op-n Chunk 10B label&°.

For instance;SP-NIST;-5’ corresponds to the accumulated NIST score for lemAggiams up
to length 5, whereas$P-NISTi,-5' corresponds to the individual NIST score for PoS 5-grasii-
NIST;.-2" corresponds to the accumulated NIST score for I@rams up to length 2, whereas
‘SP-NISTi.-4' corresponds to the individual NIST score for chunk 4-graisomplete list of SP
metric variants is available in Appendix C, Table C.2.

3.1.4 Syntactic Similarity
On Dependency Parsing (DP)

DP metrics capture similarities between dependency treexcia¢sd to automatic and reference
translations. Dependency trees are obtained usinithNePAR parser (Lin, 1998), as described in
Appendix B, Section B.2. We use two types of metrics:

DP-0,|0.|O, These metrics compute lexical overlap between dependesey from three differ-
ent viewpoints:

DP-O;-lI Overlap between words hanging at the samel, [ € [1..9], or deeper. For in-
stance,DP-0,-4’ reflects lexical overlap between nodes hanging at level 4eeper.
Additionally, we define théDP-O,-x" metric, which corresponds to the averaged values
over all levels.

DP-O.-t Overlap between wordgirectly hangingfrom terminal nodes (i.e., grammatical
categories) of typet'. For instance;DP-O.-A reflects lexical overlap between terminal
nodes of type ‘A (Adjective/Adverbs). Additionally, we fiee the‘DP-O.-x" metric,
which corresponds to the averaged values over all categorie

DP-O..-t Overlap between words ruled by non-terminal nodes (i.amgnatical elations)
of type ‘t’. For instance,DP-O,-s’ reflects lexical overlap between subtrees of type
‘s’ (subject). Additionally, we define th®P-0,-x metric, which corresponds to the
averaged values over all relation types.

190B labels are used to denote the positiamsitle, Qutside, or Rginning of a chunk) and, if applicable, the type of
chunk.



46 CHAPTER 3. TOWARDS HETEROGENEOUS AUTOMATIC MT EVALUATION

DP-HWC(i)-I This metric corresponds to theeldd-Word Chain Matching (HWCM) metric pre-
sented by Liu and Gildea (2005). All head-word chains anéenatd. The fraction of match-
ing head-word chains of a given lengthe [1..9], between the candidate and the reference
translation is computed. Average accumulated scores ugitea chain length may be used
as well. Opposite to the formulation by Liu and Gildea, in oase reference translations are
considered individually. Moreover, we define three vasawit this metric according to the
items head-word chains may consist of:

DP-HWC(i) -l chains consist of wrds.
DP-HWC(i) .-l chains consist of grammaticahiegories, i.e., parts of speech.
DP-HWC(i) .-l chains consist of grammaticadlations.

For instance,DP-HWCi,-4' retrieves the proportion of matching word-chains of lepgth
whereasDP-HWC,,-4' retrieves average accumulated proportion of matching webeins
up tolength-4. AnalogouslyDP-HWC.-4', and‘DP-HWC,-4’' compute average accumulated
proportion of category/relation chains up to length-4.

The extension of ‘DP-HWC’ metrics to the multi-referencétiag is computed by assign-
ing to each metric the maximum value attained when indiMlgiimparing to all the trees
associated to the different human references.

A complete list of DP metric variants is available in Append, Table C.3.

On Constituency Parsing (CP)

CP metrics analyze similarities between constituency paesstassociated to automatic and refer-
ence translations. Constituency trees are obtained usinGharniak-Johnson’s Max-Ent reranking
parser (Charniak & Johnson, 2005), as described in Appdhdbection B.2. Three types of metrics

are defined:

CP-STM(i)-I This metric corresponds to theg/i@actic_Tree Matching (STM) metric presented by
Liu and Gildea (2005). All syntactic subpaths in the canttidand the reference trees are
retrieved. The fraction of matching subpaths of a given tleng € [1..9], is computed.
Average accumulated scores up to a given tree dépttay be used as well. For instance,
‘CP-STMi-5’ retrieves the proportion of length-5 matching subpathserdge accumulated
scores may be computed as well. For instanCe;STM-9’ retrieves average accumulated
proportion of matching subpaths up to length-9.

The extension of the ‘CP-STM’ metrics to the multi-referersetting is computed by assign-
ing to each metric the maximum value attained when indiMlgiimparing to all the trees
associated to the different human references.

CP-O,-t Similarly to the'sP-O,’ metric, this metric computes lexical overlap accordinghe t
part-of-speecht’.
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CP-O.-t These metrics compute lexical overlap according to thegghenstituent typet’. The
difference between these metrics a88-O.-t' variants is in the phrase scope. In contrast to
base phrase chunks, constituents allow for phrase emlgeddohoverlap.

We also define th&€P-0,-x" and‘CP-O.-+ metrics, which compute the average lexical overlap
over all parts of speech and phrase constituents, resehyctiv
A complete list of CP metric variants is available in Appen@i, Table C.4.

3.1.5 Shallow Semantic Similarity

We have designed two new families of metrid& andSR which are intended to capture similarities
over Named Entities (NEs) and Semantic Roles (SRs), rasphyct

On Named Entities (NE)

NE metrics analyze similarities between automatic and raferéranslations by comparing the NEs
which occur in them. Sentences are automatically annotaged) the BIOS package (Surdeanu
et al., 2005), as described in Appendix B, Section B.3. Bl@§uires at the input shallow parsed
text, which is obtained as described in Section 3.1.3. Abtlitput, BIOS returns the text enriched
with NE information. We have defined two types of metrics:

NE-O.-t Lexical overlap between NEs according to their typEor instanceNE-O,.-PER reflects
lexical overlap between NEs of type ‘PER’ (i.e., person)jclilprovides a rough estimate of
the successfully translated proportion of person hamesal¥¢edefine theéNE-O,-x metric,
which considers the average lexical overlap over all NEgypéote that this metric considers
only actual NEs, i.e., it excludes the NE type ‘O’ (Not-a-NEJus, this metric is useless
when no NEs appear in the translation. In order to improveeitall, we introduce theNE-
O.-++" variant, which , considers overlap among all items, inalgdhose of type ‘O'.

NE-M,-t Lexical matching between NEs according to their typd-or instance;NE-M,.-LOC’
reflects the proportion of fully translated NEs of type ‘LOE., location). TheNE- M, -x’
metric considers the average lexical matching over all Ndesy excluding type ‘O'.

A complete list of NE metric variants is available in Appendl, Table C.5.

On Semantic Roles (SR)

SRmetrics analyze similarities between automatic and raeferéranslations by comparing the SRs
(i.e., arguments and adjuncts) which occur in the predic&@entences are automatically annotated
using the SwiRL package (Surdeanu & Turmo, 2005), as destiio Appendix B, Section B.3.
This package requires at the input shallow parsed text legdliavith NES, which is obtained as
described in Section 3.1.5. At the output, SwiRL returnstéxé annotated with SRs following the
notation of the Proposition Bank (Palmer et al., 2005). Weestdefined three types of metrics:
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SR-O,-t Lexical overlap between SRs according to their typEor instance;SR-0O,.-A0’ reflects
lexical overlap between ‘A0’ arguments. We also consi&&-0,.-x’, which computes the
average lexical overlap over all SR types.

SR-M,.-t Lexical matching between SRs according to their typ&or instance, the metriSR-
M,.-AM-MOD’ reflects the proportion of fully translated modal adjuncigain, ‘SR-M,.-«’
considers the average lexical matching over all SR types.

SR-0O,. This metric reflects role overlap, i.e., overlap betweenas#iu roles independently from
their lexical realization.

Note that in the same sentence several verb predicatesthsithrespective argument structures,
may co-occur. However, the metrics described above do stihduish between SRs associated to
different verbs. In order to account for such a distinctiamintroduce a more restrictive version of
these metrics'$R-M,.,,-t', ‘SR-O,.,,-t', ‘SR-M,..,-+', ‘SR-0O,.,-x', and‘SR-0,.,’), which require SRs
to be associated to the same verb.

A complete list of SR metric variants is available in Appen@i, Table C.6.

3.1.6 Semantic Similarity
On Discourse Representations (DR)

At the properly semantic level, we have developed a noveilyamhimetrics based on the Discourse
Representation Theory (DRT) by Kamp (1981). DRT is a thezakeframework offering a represen-
tation language for the examination of contextually depemndneaning in discourse. A discourse is
represented in a discourse representation structure (DR is essentially a variation of first-
order predicate calculus —its forms are pairs of first-ofdenulae and the free variables that occur
in them. DR metrics analyze similarities between automatic and rate&dranslations by compar-
ing their respective DRSs. Sentences are automaticalllyzsthusing the C&C Tools (Clark &
Curran, 2004), as described in Appendix B, Section B.4. DRSi@wed as semantic trees. As an
example, Figure 3.2 shows the DRS f&very man loves Mary.’
We have defined three groups of metrics over DRSs:

DR-STM(i)-1 This metric is similar to thé&STM’ metric defined by Liu and Gildea (2005), in this
case applied to DRSs instead of constituent trees. All semaunbpaths in the candidate
and the reference trees are retrieved. The fraction of nmgfcdubpaths of a given length,

[ € [1..9], is computed. Average accumulated scores up to a given ¢qgtd d may be used
as well. For instancePR-STMi-5' retrieves the proportion of length-5 matching subpaths.
Average accumulated scores may be computed as well. FanoestDR-STM-9’ retrieves
average accumulated proportion of matching subpaths wentyii-9.

DR-O..-t These metrics compute lexical overlap between disco@mesentation structures (i.e.,
discourse referents and discourse conditions) accordinigeir type ¢'. For instance,DR-
O,-pred’ roughly reflects lexical overlap between the referents@asa to predicates (i.e.,
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drs([[4]:Y],
[[4]:named(Y,mary,per,0),
[1]:imp(drs([[1]:X], [[2]:pred(X,man,n,1)]),
drs([[3]:E], [[3]:pred(E,love,v,0), [3]:rel(E,X,agent ,0),
[3]:rel(E,Y,patient,0)]))])

love(z), event(z),
named(y, mary, per) and ( man(x) —_—> agent(z, x), )
patient(z, y)

Formally:

Jy named(y, mary, per) A (Ve man(x) — 3z love(z) A event(z) A agent(z,x)
Apatient(z,y))

Figure 3.2: An example of DRS semantic tree

one-place properties), where@sR-O,.-imp’ reflects lexical overlap between referents asso-
ciated to implication conditions. We also introduce a‘R-O,-x" metric, which computes
average lexical overlap over all DRS types.

DR-O,,-t These metrics compute morphosyntactic overlap (i.e., é&tvwgrammatical categories
—parts-of-speech— associated to lexical items) betweelulise epresentation structures of
the same type. We also define thR-O,.,-x" metric, which computes average morphosyn-
tactic overlap over all DRS types.

Note that in the case of some complex conditions, such asdatian or question, the respective
order of the associated referents in the tree is importaettaké this aspect into account by making
the order information explicit in the construction of thersmtic tree. We also make explicit the
type, symbol, value and date of conditions which have typmb®l, value or date, such as predi-
cates, relations, named entities, time expressions,ra@rexpressions, or anaphoric conditions.

A complete list of DR metric variants is available in Appendi, Table C.7.

3.2 Automatic Evaluation of Heterogeneous MT Systems

Most metrics used in the context of automatic MT evaluatiom lzased on the assumption that
acceptabletranslations tend to share the lexicon (i.e., word formsa jppredefined set of manual

reference translations. This assumption works well in mzages. However, as we have seen in
Section 2.2.3, several results in recent MT evaluation eagms have cast serious doubts on its
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general validity. For instance, Callison-Burch et al. (@p0@nd Koehn and Monz (2006) reported
and analyzed several cases of strong disagreement betystemsrankings provided by human
assessors and those produced by the BLEU metric (Papinahj 2001). In particular, they noted

that when the systems under evaluation are different inregtug., rule-based vs. statistical or
human-aided vs. fully automatic) BLEU may be not a reliabl€ &iality indicator. The reason is

that BLEU favors MT systems which share the expected refertaxicon (e.qg., statistical systems),
and penalizes those which use a different one.

Indeed, as discussed in Section 2.2.3, the underlying dauseich simpler. In general, lex-
ical similarity is not a sufficient neither a necessary ctiadiso that two sentences convey the
same meaning. On the contrary, natural languages are sik@esd ambiguous at different levels.
Consequently, the similarity between two sentences maghiaudifferent linguistic dimensions.

Hence, in the cases in which lexical metrics fail to captuwteia translation quality, it should
still be possible to obtain reliable evaluation results hglgzing similarities at more abstract lin-
guistic levels. In order to verify this hypothesis, we haemaucted a comparative study on the
behavior of the set of metrics described in Section 3.1 agphmong other scenarios, to the evalu-
ation puzzles described in Section 2.2.3.

3.2.1 Experimental Setting

We have selected a set of coarse-grained metric variaets diccumulated/average scores over
linguistic units and structures of different kinds). Wetiiguish different evaluation contexts. First,
we study the case of a single reference translation beiritabl& In principle, this scenario should
diminish the reliability of metrics based on lexical matapialone, and favor metrics based on
deeper linguistic features. Second, we study the case efalereference translations available.
In this scenario, the deficiencies caused by the shallowwmiesgetrics based on lexical matching
should be less apparent. We also analyze separately theotasenogeneousystems (i.e., all
systems being of the same nature), and the caketefogeneousystems (i.e., there exist systems
based on different paradigms).

As to the metric meta-evaluation criterion, since we courtieman assessments, metrics can be
evaluated on the basis of human acceptability. Specificayuse Pearson correlation coefficients
between metric scores and human assessments at the dodeveenthe reason is that the purpose
of our work is to provide more reliable system rankings. ldesrto avoid biasing towards either
adequacy or fluency, we use the average sum of adequacy andyflassessments as a global
measure of quality, thus, assigning both dimensions equabitance.

3.2.2 Single-reference Scenario

We use some of the test beds corresponding toNRACL 2006 Workshop on Statistical Machine
Translation (WMT 2006{Koehn & Monz, 2006)!. Since most of the linguistic features described
in Section 3.1 are so far implemented only for the case of iEmgamong the 12 translation tasks

Hhttp://www.statmt.org/wmt06/
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In-domain Out-of-domain
#Snt | Adeq. | Fluen. | #Snt | Adeq. | Fluen. #Systems
French-to-English | 2,247| 3.81 | 3.37 | 1,274| 3.39 | 3.03 11/14
German-to-English | 2,401| 3.20 296 | 1,535 2.93 2.70 10/12
Spanish-to-English | 1,944 | 3.87 | 3.33 | 1,070| 3.56 | 3.06 11/15

Table 3.5: WMT 2006 Shared Task. Test bed description

available, we studied only the 6 tasks corresponding to theign-to-English direction. These cor-
respond to three language pairs: French-to-English {fr@&arman-to-English (de-en) and Spanish-
to-English (es-en); in and out of domain.

A single reference translation is available. System ostpansist of 2,000 and 1,064 sentences
for the ‘in-domain’ and ‘out-of-domain’ test beds, respeslly. In each case, human assessments
on adequacy and fluency are available for a subset of systethseatences. Table 3.5 shows the
number of sentences assessed in each case. Each senters@wated by two different human
judges. System scores have been obtained by averaging lbgenince scores. In order to give
the reader an idea of the translation quality exhibited lgraatic systems, average adequacy and
fluency scores are also provided (‘Adeq.” and ‘Fluen.” cahsmrespectively). The ‘#Systems’
column shows the number of systems counting on human assetsmith respect to the total
number of systems which presented to each task.

Table 3.6 shows meta-evaluation results on the basis of naoeeptability for some metric
representatives at different linguistic levels. Highestrelation coefficients attained in each task
appear highlighted. In four of the six translation tasksarstudy, all the systems are statistical
except'SYSTRAN, which is rule-based. This is the case of the German/Frémé&mnglish in-
domain/out-of-domain tasks (columns 1-4). Although the ftases are different, we have identified
several regularities. For instance, BLEU and, in genefalnatrics based on lexical matching
alone, except METEOR, obtain significantly lower levels ofrelation than metrics based on
deeper linguistic similarities. The problem with lexicagtrics is that they are unable to capture the
actual quality of the ‘SYSTRAN’ system. Interestingly, MEDR obtains a higher correlation,
which, in the case of French-to-English, rivals the toprsgpmetrics based on deeper linguistic
features. The reason, however, does not seem to be relatsdafditional linguistic operations
(i.e., stemming or synonymy lookup), but rather to the METRE@atching strategy itself (unigram
precision/recall).

Metrics at the shallow syntactic level are in the same raridgexacal metrics. At the syntactic
level, metrics obtain in most cases high correlation cdefiis. However,DP-HWC,,-4’, which,
although from the viewpoint of dependency relationshigsl nsiders only lexical matching,
obtains a lower level of correlation. This reinforces theadhat metrics based on rewarding long
n-grams matchings may not be a reliable quality indicatohesé cases.

At the level of shallow semantics, while NE metrics are natadly useful in all cases, SR met-
rics prove very effective. For instance, correlation atdi by'SR-O,.-x’ reveals that it is important
to translate lexical items according to the semantic radg filay inside the sentence. Moreover, cor-
relation attained by the&SR-M,.-+" metric is a clear indication that in order to achieve a higality
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Heterogeneous Homogeneous
de-en fr-en es-en
Level Metric in out | in out in out
1-WER 0.35| 0.37| 0.75| 0.76 0.89| 0.84
1-PER 0.59| 0.43| 0.73 | 0.67 0.83| 0.79
1-TER 0.52| 0.47| 0.76 | 0.78 0.89| 0.86
BLEU 0.62| 0.67| 0.73 | 0.88 0.90| 0.88
NIST 0.57| 0.63| 0.75| 0.83 0.89| 0.86

Lexical GTM (e =1) 0.67| 0.71| 0.85| 0.88 0.87| 0.83
GTM (e = 2) 0.55| 0.68| 0.73 | 0.88 0.91| 0.87
O, 0.67| 0.71| 0.85| 0.87 0.87| 0.83
ROUGEy 0.66| 0.79| 0.85| 0.95 091| 0.88
METEORwact || 0.72| 0.67 | 0.90| 0.94 0.88| 0.84
METEORsyn || 0.78| 0.82| 0.94 | 0.95 0.87| 0.85

SPO,-x 0.66| 0.72| 0.82| 0.90 0.89| 0.82
SPO.-* 0.67| 0.77| 0.82| 0.91 0.90| 0.86
Shallow | SP-NIST, 0.58| 0.64| 0.75| 0.83 0.89| 0.86
Syntactic | SP-NIST, 0.79| 0.75| 0.76 | 0.93 0.87| 0.87
SP-NIST;, 0.80| 0.66| 0.70 | 0.81 0.86| 0.82
SP-NIST, 0.78| 0.55| 0.73 | 0.89 0.86| 0.84
DP-O;-* 0.83| 0.84| 0.89| 0.95 0.92| 0.86
DP-O -« 0.91|0.88| 0.92| 0.95 0.89| 0.85
DP-O,-x 0.94| 0.88| 0.89| 0.98 0.90| 0.86

DP-HWC,-4 0.64| 0.73| 0.78 | 0.89 0.95| 0.84
DP-HWC.-4 0.91| 0.73| 0.96 | 0.97 0.93| 0.89
Syntactic | DP-HWC,-4 0.93| 0.75| 0.96 | 0.98 0.93| 0.90

CP-O,-* 0.66| 0.74| 0.82| 0.90 0.89| 0.82
CP-O.~x 0.71| 0.79| 0.86 | 0.93 091| 0.85
CP-STM-4 0.88| 0.86| 0.90 | 0.97 0.90| 0.84
CP-STM-5 0.90| 0.87| 0.91 | 0.97 0.90| 0.85
CP-STM-9 0.95| 0.87| 0.96 | 0.96 0.91| 0.87
NE-O.-x 0.94| 0.64| 0.79| 0.77 0.72| 0.71
NE-Me-« 0.95|0.69| 0.81| 0.81 0.76| 0.77
NE-O-*% 0.64| 0.71| 0.82| 0.89 0.89| 0.82
Shallow | SR-O,- 0.93| 0.88| 0.89| 0.95 092| 0.91
Semantic | SR-M,-x 0.93| 0.81| 0.82| 0.96 0.86| 0.82
SR-Oyy* 0.78| 0.88| 0.81| 0.94 091| 0.90
SR-M,.,-* 0.74| 0.82| 0.75| 0.97 0.89| 0.85
SR-O;, 0.93| 0.78| 0.96 | 0.89 092| 0091
SR-O,, 0.83| 0.88| 0.84| 0.93 091| 0.91
DR-O,-x 0.68| 0.80| 0.77 | 0.87 091| 0.86
Semantic | DR-O,,-* 0.92| 0.85| 0.86 | 0.92 0.90| 0.85
DR-STM-4 0.80| 0.87| 0.87 | 0.87 0.90| 0.84
DR-STM-9 0.93| 0.89| 0.96 | 0.89 0.89| 0.85

Table 3.6: WMT 2006 Shared Task. Meta-evaluation resulsetan human acceptability at the
system level
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it is important to ‘fully’ translate ‘whole’ semantic striwres (i.e., arguments/adjuncts). The exis-
tence of all the semantic structureSK-0,’), specially associated to the same veg&R(O,.,’), is
also important.

At the semantic level, metrics based on discourse reprasams attain also high levels of corre-
lation, although théDR-O,.-x" metric, which computes average lexical overlap over DRcsiines,
exhibits only a modest performance.

In the two remaining tasks, Spanish-to-English in-donmitbf-domain, all the systems are
statistical (columns 5-6 in Table 3.6). In this case, BLEWvas very effective, both in-domain
and out-of-domain. Indeed, all metrics based on lexicathiag obtain high levels of correlation
with human assessments. However, still metrics based gredérguistic analysis attain, in gen-
eral, higher correlation coefficients, although the ddfare is not as significant as in the case of
heterogeneous systems.

3.2.3 Multiple-reference Scenario

We study the case reported by Callison-Burch et al. (200@)éarcontext of the Arabic-to-English
exercise of the2005 NIST MT Evaluation Campaiti(Le & Przybocki, 2005%3. All systems
are statistical exceptinearB, a human-aided MT system (Callison-Burch, 2005). Fiverezfee
translations are available. System outputs consist of6ls@htences. For six of the systems we
counted on a subjective manual evaluation based on ade@umatc§luency over a subset of 266
sentences, thus, summing up to a total of 1,596 cases assdsseh case was evaluated by two
different human judges. System scores have been obtainaekebgging over all sentence scores.

Table 3.7 shows the level of correlation with human assestrfer some metric representa-
tives (see ‘ALL’ column). In this case, lexical metrics obt&xtremely low levels of correlation.
Again, the problem is that lexical metrics are unable towagpthe actual quality of LinearB. At the
shallow syntactic level, only metrics which do not considey lexical information‘S6P-NIST,” and
‘SP-NIST.") attain a significantly higher quality. At the syntactic éévall metrics attain a higher
correlation. In particular head-word chain matching ovangmatical relations©®P-HWC,’) proves
very effective. At the shallow semantic level, again, wiNIE metrics are not specially useful, SR
metrics exhibit a high degree of correlation. Finally, & §emantic level, DR metrics obtain also
high correlation coefficients, with a special mention fog tlariant dealing with morphosyntactic
overlap over discourse representatioisR{O, ,-+").

On the other hand, if we remove the output by the LinearB sygsee ‘SMT’ column), lexical
metrics attain a much higher correlation, in the same rarigeatrics based on deeper linguis-
tic information. However, still metrics based on syntagarsing, semantic roles, and discourse
representations, exhibit, in general, a slightly highealiqy

3.2.4 The WMT 2007 Shared Task

Recently, together with other metric developers, we padied in a pilot meta-evaluation ex-
periment in the context of thACL 2007 Second Workshop On Statistical Machine Transglatio

2http://www.nist.gov/speech/tests/summaries/2005/mt0 5.htm
A brief numerical description is available in Table 3.12uton 3.
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Level Metric ALL | SMT
1-WER -0.50| 0.69
1-PER -0.35| 0.75
1-TER -0.40| 0.74
BLEU 0.06| 0.83
NIST 0.04| 0.81

Lexical GTM (e=1) 0.03| 0.92
GTM (e = 2) 0.16| 0.89
Oy -0.15| 0.80
ROUGEy 0.11| 0.83
METEOR.xact 0.03| 0.88
METEORy sy | 0.05| 0.90

SPO,* 0.03| 0.84
SPO,- 0.04| 0.88
Shallow | SP-NIST 0.04| 0.82
Syntactic | SP-NIST, 0.42| 0.89
SP-NIST,, 0.49| 0.82
SP-NIST. 0.44| 0.68
DP-O;% 0.51| 0.94
DP-O, - 0.53| 0.91
DP-O,-% 0.72| 0.93

DP-HWC,-4 0.52| 0.86
DP-HWC.-4 0.80| 0.75
Syntactic | DP-HWGC,-4 0.88| 0.86

CP-Op,-% -0.02| 0.84
CP-O.* 0.11| 0.80
CP-STM-4 0.54| 0.91
CP-STM-5 0.61| 0.91
CP-STM-9 0.72| 0.93
NE-O.-* 0.24| 0.83
NE-Me- 0.33| 0.79
NE-O-+x -0.06 | 0.80
Shallow | SRO,-x 0.54| 0.83
Semantic | SR-M,-x 0.68| 0.91
SR-Oyp-% 0.41] 0.81
SR-M,.,-* 0.61]| 0.92
SRO, 0.66| 0.75
SR-Oy, 0.46| 0.81
DR-O,-% 0.51| 0.89
Semantic | DR-O,,-x 0.81| 0.95
DR-STM-4 0.72| 0.90
DR-STM-9 0.69| 0.91

Table 3.7: NIST 2005. Arabic-to-English. Meta-evaluatresults based on human acceptability at
the system level
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Metric Adequacy Fluency Rank Constituent Overall
Semantic Role Overlap 74 .839 .803 741 .789

ParaEval-Recall 712 742 .768 .798 .755

METEOR .701 719 .745 .669 .709
BLEU .690 722 672 .602 671
1-TER .607 .538 .520 514 .644
Max Adequacy Correlatior] .651 .657 .659 .534 .626
Max Fluency Correlation .644 .653 .656 512 .616
GTM .655 .674 .616 495 .610
Dependency Overlap .639 .644 .601 512 .599
ParaEval-Precision .639 .654 .610 491 .598
1-WER of Verbs .378 422 431 297 .382

Table 3.8: WMT 2007 Shared Task. Official meta-evaluaticults for Foreign-to-English tasks

(WMT’07) (Callison-Burch et al., 200%}. In particular, we submitted two of our metricgP-
0,-x (i.e., dependency overlap) argR-O,.-x' (i.e., semantic role overlap) to the evaluation of the
results of the shared task on translation between severapEan languages. Metric quality was
evaluated in terms of correlation with human assessmettis aystem level. Several quality criteria
were used:

Adequacy and fluency on a 1-5 scale (see Section 2.3.2).

Ranking of translation sentences.Judges were asked to rank sentence translations from best to
worst relative to the other choices (ties were allowed).

Ranking of translation constituents. Judges were asked to rank only the translation of highlayhte
parts of the sentences. These were selected based on datoonatituency parsing and word
alignments, according to the following criteria:

¢ the constituent could not be the whole source sentence.
¢ the constituent had to be longer than three words, and n@tdahgn fifteen words.

e the constituent had to have a corresponding phrase withsstent word alignment in
each of the translations.

Reproducing results in (Callison-Burch et al., 2007), €&, shows the average correlation
over all the Foreign-to-English translation tasks betwatric scores and human assessments ac-
cording to these quality criteria for all automatic metqcesented to the evaluation. This involved
four tasks: Czech-English, French-English, German-Ehgdind Spanish-English. Two test sets
were available for each task but for the Czech-English tagksh was only evaluated ‘out of do-
main’. Metrics are sorted according to their level of caateln in decreasing order. It can be

“http://www.statmt.org/wmt07/
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observed that the th&€R-O,.-x" metric exhibited the highest overall correlation amongadirics,
and the top-correlation in three quality criteria, beingas®l in the fourth.

3.3 Onthe Robustness of Linguistic Features

In the previous section, we have shown that linguistic festibased on syntactic and semantic
information are useful for the purpose of automatic MT eatian. These metrics have proved very
effective, in particular when applied to test beds with & 8gstem typology, i.e., test beds in which
there are automatic outputs produced by systems based feredif paradigms (statistical, rule-
based, human-aided, etc.). The reason is that they arecatdgture deep MT quality distinctions
which occur beyond the shallow level of lexical similarstie

However, these metrics present the major limitation ofinglyon automatic linguistic proces-
sors, which are not equally available for all languages ahds& performance may vary depending
on the type of linguistic analysis and the application domaihus, it could be argued that they
should suffer a significant performance decrease wheneappbi a very different translation do-
main, or to heavily ill-formed sentences (p.c., Young-SaeIBM). In this work, we have studied
this issue by conducting a contrastive empirical study @nlibhavior of a heterogeneous set of
metrics over several evaluation scenarios of decreasamglation quality. In particular, we have
studied the case of Chinese-to-English translation ofraatizally recognized speech, which is a
paradigmatic example of low quality and heavily ill-formadtomatic translations.

3.3.1 Experimental Setting

We have used the test bed from the Chinese-to-English &tamsltask at the¢2006 Evaluation
Campaign on Spoken Language Translatiqi@aul, 2006%°, extracted from the Basic Travel Ex-
pressions Corpus (BTEC) (Takezawa, 1999). The test setregesb00 translation test cases corre-
sponding to simple conversations (question/answer sicgiathe travel domain. Besides, there are
3 different evaluation subscenarios of increasing traiosiaifficulty, according to the translation
source:

CRR: Translation of correct recognition results (as producetidoyjan transcribers).
ASR read: Translation of automatic read speech recognition results.

ASR spont: Translation of automatic spontaneous speech recogniisuits.

For the purpose of automatic evaluation, 7 human refereaoslations and automatic outputs
by up to 14 different MT systems for each evaluation subs@erse available. In addition, we
count on the results of a process of manual evaluation. Fdr @@bscenario, 400 test cases from 6
different system outputs were evaluated, by three humagsssss each, in terms of adequacy and
fluency on a 1-5 scale (LDC, 2005). A brief numerical deswipf these test beds is available
in Table 3.9. Itincludes the number of human references gsigi® outputs available, as well as

Bhttp://www.slc.atr.jp/IWSLT2006/



3.3. ON THE ROBUSTNESS OF LINGUISTIC FEATURES 57

CRR | ASRread | ASR spont
#human-references| 7 7 7
#system-outputs 14 14 13
#sentences 500 500 500
HOULPUTS,ssessed 6 6 6
#sentenCeSeossed 400 400 400
Average Adequacy | 1.40 1.02 0.93
Average Fluency 1.16 0.98 0.98

Table 3.9: IWSLT 2006 MT Evaluation Campaign. Chinese-tgfish test bed description

the number of sentences per output, and the number of sysigute and sentences per system
assessed. In order to give an idea of the translation quedhipited by automatic systems, average
adequacy and fluency scores are also provided.

In our experiments, metrics are evaluated both in terms afidruacceptability and human
likeness. In the case of human acceptability, metric quaimeasured on the basis of correlation
with human assessments both at the sentence and docuneensystem) levels. We compute
Pearson correlation coefficients. The sum of adequacy aaddjuis used as a global measure of
quality. Assessments from different judges have been gedran the case of human likeness, we
use the probabilistic KING measure defined inside @#RLA Framework. Details on KING’s
formulation are available in Section 3.4.1. Although KING@Gngputations do not require human
assessments, for the sake of comparison, we have limitée tget of test cases counting on human
assessments.

3.3.2 Metric Performance

Table 3.10 presents meta-evaluation results for the thregcsnarios defined (‘CRR’, ‘ASR read’
and ‘ASR spont’). As before, metrics are grouped accordinthé linguistic level at which they
operate. For the sake of readability, we have selected d setalf representatives from each level.
Their respective behavior is evaluated in terms of humambiss (KING, columns 1-3), and human
acceptability both at the sentence levBL(;, columns 4-6) and system levek(,, columns 7-9).
Highest correlation coefficients attained in each caseaughlighted, whereas italics are used to
indicate low correlation coefficients.

System Level Behavior

At the system level R, columns 7-9), the highest quality is in general attainednigjrics based
on deep linguistic analysis, either syntactic or semant&iiterpret the boost in performance of
these metrics at the document level as an indicator thag tiesmetrics of high precision. Parsing
errors (unanalyzed or wrongly analyzed sentences) woulddiely causing a loss of recall, but for
the cases in which the linguistic analysis is successfakdimetrics would be able to capture fine
quality distinctions.

Let us note, however, the anomalous behavior of metricscbandexical overlap over NEs
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KING Ront Ry
ASR | ASR ASR | ASR ASR | ASR
Level Metric CRR | read | spont || CRR | read | spont || CRR | read | spont
1-WER 0.63| 0.69| 0.71| 0.47| 050| 0.48| 0.50| 0.32| 0.52
1-PER 0.71| 0.79| 0.79| 0.44| 0.48| 0.45| 0.67| 0.39| 0.60
1-TER 0.69| 0.75| 0.77| 0.49| 0.52| 0.50| 0.66| 0.36| 0.62
BLEU 0.69| 0.72| 0.73| 054| 0.53| 0.52| 0.79| 0.74| 0.62
Lexical NIST 0.79| 0.84| 0.85| 0.53| 0.54| 0.53| 0.12| 0.26| -0.02

GTM (e = 1) 0.75| 0.81| 0.83| 0.50| 0.52| 0.52| 0.35| 0.10| -0.09
GTM (e = 2) 0.72| 0.78| 0.79| 0.62| 0.64| 0.61| 0.78| 0.65| 0.62
METEORyusyn | 0.81| 0.86| 0.86| 0.44| 0.50| 0.48| 0.55| 0.39| 0.08
ROUGEy 1.2 0.74| 0.79| 0.81| 0.58| 0.60| 0.58| 0.53| 0.69| 0.43

0O, 0.74| 0.81| 0.82| 0.57| 062| 0.58| 0.77| 0.51| 0.34
SPO,-* 0.75| 0.80| 0.82| 0.54| 0.59| 0.56| 0.77| 0.54| 0.48
SPO.-* 0.74| 0.81| 0.82| 0.54| 0.59| 0.55| 0.82| 0.52| 0.49
Shallow | SP-NIST, 0.79| 0.84| 0.85| 0.52| 0.53| 0.52| 0.10| 0.25| -0.03
Syntactic | SP-NIST, 0.74| 0.78| 0.80| 0.44| 0.42| 0.43| -0.02| 0.24| 0.04
SP-NIST;0 0.65| 0.69| 0.70| 0.33| 0.32| 0.35| -0.09| 0.17| -0.09
SP-NIST. 0.55| 0.59| 05| 0.24] 0.22| 0.25| -0.07| 0.19| 0.08
CP-O,-* 0.75| 0.81| 0.82| 0.57| 0.63| 0.59| 0.84| 0.67| 0.52
CPO.-* 0.74| 0.80| 0.82| 0.60| 0.64| 0.61| 0.71| 0.53| 0.43
DP-O;-x 0.68| 0.75| 0.76| 0.48| 0.50| 0.50| 0.84| 0.77| 0.67
DP-O.-% 0.71| 0.76| 0.77| 0.41| 0.46| 0.43| 0.76| 0.65| 0.71
Syntactic | DP-O,-* 0.75| 0.80| 0.81| 051| 053] 0.51| 0.81| 0.75| 0.62

DP-HWC,-4 0.54| 0.57| 0.57| 0.29| 0.32| 0.28| 0.73| 0.74| 0.37
DP-HWC.-4 0.48| 0.51| 0.52| 0.17| 0.18| 0.22| 0.73| 0.64| 0.67
DP-HWC.-4 0.44| 049| 048] 0.20| 0.21| 0.25| 0.71| 0.58| 0.56

CP-STM-4 0.71| 0.77| 0.80| 053] 0.56| 0.54| 0.65| 0.58| 0.47
NE-M.-* 0.14| 0.16| 0.18| 0.10| 0.13| 0.08| -0.34| 0.24| -0.48
NE-O.- 0.14| 0.17| 0.18| 0.10| 0.12| 0.07| -0.27| 0.29| -0.31
NE-Oc-+x 0.74| 0.80| 0.82| 0.56| 0.61| 0.58| 0.76| 0.55| 0.34
SR-M,.-x 0.40| 0.43| 0.45| 0.29| 0.28| 0.29| 0.52| 0.60| 0.20
SR-O,-x 045| 049| 051| 0.35| 0.35| 0.36| 0.56| 0.58| 0.14
Shallow | SR-O, 0.31| 0.33| 0.35| 0.16| 0.15| 0.18| 0.68| 0.73| 0.53
Semantic | SR-M,.,-x 0.38| 041| 0.42| 0.33| 0.34| 0.34| 0.79| 0.81| 0.42
SR-O,p-* 0.40| 0.44| 0.45| 0.36| 0.38| 0.38| 0.64| 0.72| 0.72
SR-O,, 0.36| 0.40| 0.40| 0.27] 0.31| 0.29| 0.34| 0.78| 0.38
DR-O,-% 0.67| 0.73| 0.75| 0.48| 0.53| 0.50| 0.86| 0.74| 0.77
Semantic | DR-O,,-* 059| 064| 0.65| 0.34| 0.35| 0.33| 0.84| 0.78| 0.95
DR-STM-4 0.58| 0.63| 0.65| 0.23] 0.26| 0.26| 0.75| 0.62| 0.67

Table 3.10: IWSLT 2006, Chinese-to-English. Meta-evaturatesults
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alone, which report completely useless in this test bed.r&ason is that these metrics are focused
on a very partial aspect of quality, which does not seem tari@ortant in this specific test bed.
Observe how theNE-O.-x+" metric, which combines lexical overlap over NEs with lexiceerlap
over the rest of words, performs similarly to lexical medric

As to the impact of sentence ill-formedness, while most ittt the lexical level suffer a
significant variation across the three subscenarios, ttferpgance of metrics at deeper linguistic
levels is in general quite stable. However, in the case ofrtireslation of automatically recognized
spontaneous speech (ASR spont) we have found thaSEe,.-«' and‘SR-M,.-x" metrics, respec-
tively based on lexical overlap and matching over semaotesy suffer a very significant decrease
far below the performance of most lexical metrics. Althot®R-O,.-x' has performed well on other
test beds (Giménez & Marquez, 2007b), its low performaner the BTEC data suggests that it is
not fully portable across different evaluation scenarios.

Finally, it is highly remarkable the degree of robustnessildted by semantic metrics based
on lexical and morphosyntactic overlap over discourseasprtations'PR-O,-x" and‘DR-0,.,-*,
respectively), which obtain a high system-level correlativith human assessments across the three
subscenarios.

Sentence Level Behavior

At the sentence level (KING anA,,;, columns 1-6), highest quality is attained in most cases by
metrics based on lexical matching. This result was expesitext all MT systems are statistical and
the test set is in-domain, that is, it belongs to the same @omavhich systems have been trained.
Therefore, translation outputs have a strong tendencyaeghe sublanguage (i.e., word selection
and word ordering) represented by the predefined set of huefi@rence translations.

Metrics based on lexical overlap and matching over shallntastic categories and syntactic
structures‘SP-O,-+", ‘SP-O -+, ‘CP-O,-+', ‘CP-O.-%", ‘DP-O;-*", ‘DP-O.-*", and'DP-O,-+") perform
similarly to lexical metrics. However, computing NIST sesrover base phrase chunk sequences
(‘SP-NIST;,;,’, ‘SP-NIST,") is not as effective. Metrics based on head-word chain nragc{DP-
HWC,’, ‘DP-HWC.’, ‘DP-HWC,’) suffer also a significant decrease. Interestingly, theimbased
on syntactic tree matchin¢gdP-STM’) performed well in all scenarios.

Metrics at the shallow semantic level suffer also a seveop @n performance. Particularly
significant is the case case of tHf#R-O,’ metric, which does not consider any lexical information.
Interestingly, théSR-0,.,’ variant, which only differs in that it distinguishes betwe®&Rs associated
to different verbs, performs slightly better.

At the semantic level, metrics based on lexical and morphtasyic overlap over discourse
representationsR-O,-+" and ‘DR-0,,-x') suffer only a minor decrease, whereas semantic tree
matching (DR-STM’) reports as a specially bad predictor of human acceptalflit,,;).

However, the most remarkable result, in relation to the gbghis work, is that the behavior of
syntactic and semantic metrics across the three evalustibscenarios is, in general, quite stable
—the three values in each subrow are in a very similar randgeréefore, answering the question
posed in the introductiornsentence ill-formedness is not a limiting factor in the perfance of
linguistic metrics
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3.3.3 Improved Sentence Level Behavior

By inspecting particular instances, we have found thatlistic metrics are, in many cases, unable
to produce any evaluation result. The number of unscoretésees is particularly significant in
the case of SR metrics. For instance, ‘®R-0O,.-x' metric is unable to confer an evaluation score in
57% of the cases. Several reasons explain this fact. Thafidstnost important is that linguistic
metrics rely on automatic processors trained on out-ofalordata, which are, thus, prone to error.
Second, we argue that the test bed itself does not allow figréxploiting the capabilities of these
metrics. Apart from being based on a reduced vocabularg@2¢sstinct words), test cases consist
mostly of very short segments (14.64 words on average),lwhitheir turn consist of even shorter
sentences (8.55 words on averd§e)

A possible solution could be to back off to a measure of ldxdgmilarity in those cases in which
linguistic processors are unable to produce any lingusstalysis. This should significantly increase
their recall. With that purpose, we have designed two nevargs for each of these metrics. Given
a linguistic metricz, we define:

e x;, — by backing off to lexical overlap));, only when the linguistic processor was not able
to produce a parsing. Lexical scores are conveniently dcaehat they are in a similar range
to = scores. Specifically, we multiply them by the averagscore attained over all other test
cases for which the parser succeeded. Formally, given adsst belonging to a set of test
casesl:

xp(t) = OW&)W otherwise
a(t) otherwise

whereok(T) is the subset of test casesZirwhich were successfully parsed.

e x; — by linearly interpolatingr andO; scores for all test cases, via arithmetic mean:

z; (t) _ .Z'(t) —;Ol(t)

In both cases, system-level scores are calculated by angrager all sentence-level scores.

Table 3.11 shows meta-evaluation results on the perforenahthese variants for several rep-
resentatives from the SR and DR families. For the sake of anisgn, we also show the scores
attained by the base versions, and by some of the top-scaratiges from other linguistic levels.

The first observation is that in all cases the new variantsestdrm their respective base metric,
being linear interpolation the best alternative. The iaseeis particularly significant in terms of
human likeness. New variants even outperform lexical m®trincluding theO; metric, which
suggests that, in spite of its simplicity, this is a valid donation scheme. However, in terms of
human acceptability, the gain is only moderate, and s#irtherformance is far from top-scoring
metrics.

Vocabulary size and segment/sentence average lengthd&eemeomputed over the set of reference translations.
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KING Rgnt Rsys
ASR | ASR ASR | ASR ASR | ASR
Level Metric CRR | read | spont || CRR | read | spont || CRR | read | spont
Lexical NIST 0.79| 0.84| 0.85| 0.53| 0.54| 0.53| 0.12| 0.26| -0.02
GTM (e = 2) 0.72| 0.78| 0.79| 0.62| 0.64| 0.61| 0.78| 0.65| 0.62
METEORyusyn | 0.81| 0.86| 0.86| 0.44| 0.50| 0.48| 0.55| 0.39| 0.08
O, 0.74| 0.81| 0.82| 057| 0.62| 0.58| 0.77| 0.51| 0.34
CP-O,-x 0.75| 0.81| 0.82| 057| 0.63| 0.59| 0.84| 0.67| 0.52
Syntactic | CP-O.-* 0.74| 0.80| 0.82| 0.60| 0.64| 0.61| 0.71| 0.53| 0.43
DP-O;-x 0.68| 0.75| 0.76| 0.48| 0.50| 0.50| 0.84| 0.77| 0.67
SR-M,.-x 0.40| 0.43| 0.45| 0.29| 0.28| 0.29| 0.52| 0.60| 0.20
SR-M,.-%;, 0.68| 0.72| 0.73| 0.31| 0.30| 0.31| 0.52| 0.60| 0.20
SR-M,.-*; 0.84| 0.86| 0.88| 0.34| 0.34| 0.34| 0.56| 0.63| 0.25
SR-O,.-% 0.45| 0.49| 0.51| 035| 0.35| 0.36| 0.56| 0.58| 0.14
SR-O,.-%p 0.71| 0.75| 0.78| 0.38| 0.38| 0.38| 0.56| 0.58| 0.14
SR-O,.-x; 0.84| 0.88| 0.89| 0.41| 0.41| 0.41| 0.62| 0.60| 0.22
SRO,. 0.31| 0.33| 0.35| 0.16| 0.15| 0.18| 0.68| 0.73| 0.53
SRO,.; 0.54| 0.58| 0.60| 0.19| 0.18| 0.20| 0.68| 0.73| 0.53
Shallow | SR-O,; 0.72| 0.77| 0.79| 0.26| 0.26| 0.27| 0.80| 0.73| 0.67
Semantic | SR-M,.,-x 0.38| 0.41| 0.42| 0.33| 0.34| 0.34| 0.79| 0.81| 0.42
SR-M,.,~%y, 0.70| 0.73| 0.74| 0.34| 0.35| 0.34| 0.79| 0.81| 0.42
SR-M,.,~*; 0.88| 0.90| 0.92| 0.36| 0.38| 0.37| 0.81| 0.82| 0.45
SR-O,.,-% 0.40| 0.44| 0.45| 0.36| 0.38| 0.38| 0.64| 0.72| 0.72
SR-O,., %y, 0.72| 0.76| 0.77| 0.38| 0.40| 0.39| 0.64| 0.72| 0.72
SR-O,.,-%; 0.88| 0.90| 0.91| 0.40| 0.42| 0.41| 0.69| 0.74| 0.74
SRO,., 0.36| 0.40| 0.40| 0.27| 0.31| 0.29| 0.34| 0.78| 0.38
SRO,p 0.66| 0.70| 0.71| 0.29| 0.32| 0.30| 0.34| 0.78| 0.38
SR-O,.; 0.83| 0.86| 0.88| 0.33| 0.36| 0.33| 0.49| 0.82| 0.56
DR-O,.-x 0.67| 0.73| 0.75| 0.48| 0.53| 0.50| 0.86| 0.74| 0.77
DR-O,.-x} 0.69| 0.75| 0.77|f 0.50| 0.53| 0.50| 0.90| 0.69| 0.56
Semantic | DR-O,.-%; 0.83| 0.87| 0.89| 0.53| 0.57| 0.53| 0.88| 0.70| 0.61
DR-O,.p,-* 0.59| 0.64| 0.65| 0.34| 0.35| 0.33| 0.84| 0.78| 0.95
DR-O,-*p 0.61| 0.65| 0.67| 0.35| 0.36| 0.34| 0.86| 0.71| 0.57
DR-O,p-*; 0.80| 0.84| 0.85| 0.43| 0.46| 0.43| 0.90| 0.75| 0.70
DR-STM-4 0.58| 0.63| 0.65| 0.23| 0.26| 0.26| 0.75| 0.62| 0.67
DR-STM-4-b 0.64| 0.68| 0.71| 0.23| 0.26| 0.27| 0.75| 0.62| 0.67
DR-STM-4-i 0.83| 0.87| 0.87| 0.33| 0.36| 0.36| 0.84| 0.63| 0.66

Table 3.11: IWSLT 2006, Chinese-to-English. Improved seo¢ level evaluation
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Sentence-level improvements are also reflected at thensysteel, although to a lesser extent.
Interestingly, in the case of the translation of automdgic@cognized spontaneous speech (ASR
spont, column 9), mixing with lexical overlap improves tbe/tperformanceéSR-O,’ and‘'SR-O,.,’
metrics, at the same time that it causes a significant droperhigh-performancéR-0,’ and
‘DR-0,,," metrics.

Still, the performance of linguistic metrics at the sentelavel is under the performance of lex-
ical metrics. This is not surprising. After all, apart froelying on automatic processors, linguistic
metrics focus on very partial aspects of quality. Howevarces they operate at complementary
guality dimensions, their scores are suitable for beingluoed.

3.4 Non-Parametric Metric Combinations

Approaches described in Section 2.4.4 (Corston-Oliverl.et2@01; Kulesza & Shieber, 2004;
Quirk, 2004; Gamon et al., 2005; Liu & Gildea, 2007; Albre€hHwa, 2007a; Albrecht & Hwa,
2007Db; Paul et al., 2007), although based on different agsans, may be classified as belonging
to a same family. Allimplement parametriccombination strategy. Their models involve a number
of parameters which must be adjusted. The main differentvedas these methods can be found in
the meta-evaluation criterion underlying. While Corstliver et al. (2001), Kulesza and Shieber
(2004), and Gamon et al. (2005) rely on human likeness ¢he. metric ability to distinguish
between human and automatic translations), Akiba et al01R0Quirk (2004), Liu and Gildea
(2007), Albrecht and Hwa (2007a; 2007b) and Paul et al. (R8£ly on human acceptability (i.e.,
the metric ability to emulate human assessments).

As an alternative, in this section, we study the behavianasf-parametricmetric combination
schemes. Non-parametric approaches offer the advantagedhraining or adjustment of param-
eters is required. Metrics are combined without having tmusidheir relative importance. We
describe two different non-parametric combination methoespectively based on human likeness
and human acceptability as meta-evaluation criteria. d&ssirather than limiting to the lexical
dimension, we work on the rich set of linguistic metrics disam in Section 3.1.

3.4.1 Approach

Our approach to non-parametric combination schemes badmaahoan likeness relies on tARLA
Framework (Amig6 et al., 2005), which is, to our knowledties only existing non-parametric ap-
proach to metric combinationQARLA is a probabilistic framework originally designed for the
evaluation of automatic summarieQARLA is non-parametric because, rather than assigning a
weight to the contribution of each metric, the evaluatiom giiven automatic output is addressed
through a set of independent probabilistic tests (one perighén which the goal is to falsify the
hypothesis thai is a human reference. The input QARLA is a set of test cases (i.e., automatic
translations), a set of similarity metricg, and a set of model® (i.e., human references) for each
test case. With such a testba@ARLA provides the two essential ingredients required for metric
combination:

Combination Scheme Metrics are combined through the QUEEN measure. QUEEN tgwera
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under theunanimityprinciple, i.e., the assumption that a ‘good’ translationsirbe similar

to all human references according to all metrics. QUEKHE®) is defined as the probability,
overR x R x R, that, for every metric inX, the automatic translatiomis more similar to a

human reference than two other references, andr”, to each other. Formally:

QUEENy x(a) = Prob(Vz € X : z(a,r) > z(r',7"))

wherez(a, ) stands for the similarity between andr according to the metria. Thus,
QUEEN allows us to combine different similarity metricsdra. single measure, without
having to adjust their relative importance. Besides, QUHEHrs two other important ad-
vantages which make it really suitable for metric combirati(i) it is robustagainst metric
redundancy, i.e., metrics covering similar aspects ofityyand (ii) it is not affected by the
scale properties of metrics. The main drawback of the QUEEsure is that it requires
at least three human references, when in most cases onlyle seference translation is
available.

Meta-evaluation Criterion Metric quality is evaluated using the KING measure. All hummef-
erences are assumed to be equally optimal and, while thdikeleto be different, the best
similarity metric is the one that identifies and uses theufiest that are common to all hu-
man references, grouping them and separating them fronmatitotranslations. Based on
QUEEN, KING represents the probability that a human refegetioes not receive a lower
score than the score attaineddayy automatic translation. Formally:

KING 4 r(X) = Prob(va € A: QUEENy »_ () (r) > QUEENy 5} (a))

The closest measure to KING is ORANGE (Lin & Och, 2004b). OR@HRlis defined as the
ratio between the average rank of the reference transtatiathin the combined automatic
and reference translations list and the size of the listmiadly:

ORANGE4 g(X) = Prob(r € Rya € A: xp_g)(r) > 2y (a))
However, ORANGE does not allow for simultaneously consiagdifferent metrics.

Apart from being non-parametriQARLA exhibits another important feature which differen-
tiates it form other approaches. Besides considering thdasity between automatic translations
and human referenceARLA also takes into account the distribution of similaritiesoag human
references.

However,QARLA is not well suited to port from human likeness to human aatslity. The
reason is that QUEEN is, by definition, a very restrictive suga —a ‘good’ translation must be
similar toall human references accordingdlh metrics. Thus, as the number of metrics increases,
it becomes easier to find a metric which does not satisfy th&e QN assumption. This causes
QUEEN values to get close to zero, which turns correlatioth Wwuman assessments into an im-
practical meta-evaluation measure.
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AE 2004 | CE2004 | AE2005 | CE2005

#human-references 5 5 5 4
#system-outputs 5 10 7 10
#sentences 1,353 1,788 1,056 1,082
#OULPULS, gsessed 5 10 6 5
#sentenCeSeossed 347 447 266 272
Average Adequacy | 2.81 2.60 3.00 2.58
Average Fluency 2.56 2.41 2.70 2.47

Table 3.12: NIST 2004/2005 MT Evaluation Campaigns. Tedtdmscription

We havesimulateda non-parametric scheme based on human acceptability byingowith
uniformly averaged linear combinations (ULC), i.e., amitic mean, of metrics. Our approach is
similar to that of Liu and Gildea (2007) except that in ourecai the metrics in the combination
are equally importaft. In other wordsULC is indeed a particular case of a parametric scheme, in
which the contribution of each metric is not adjusted. Fdlyna

ULCx (a, R) = ﬁ S w(a, R)
zeX
whereX is the metric set, and(a, R) is the similarity between the automatic translatioand the
set of reference®, for the given test case, according to the metridNVe evaluate metric quality
in terms of correlation with human assessments at the senienel R,;). We use the sum of
adequacy and fluency to simulate a global assessment ofyquali

3.4.2 Experimental Setting

We use the test beds from the 2004 and 2005 NIST MT Evaluatanpaigns (Le & Przybocki,
2005)8. Both campaigns include two different translations exasi Arabic-to-English (‘AE’)
and Chinese-to-English (‘CE’). Human assessments of aaggand fluency are available for a
subset of sentences, each evaluated by two different humdges. A brief numerical description
of these test beds is available in table 3.12. It includesitireber of human references and system
outputs available, as well as the number of sentences pautoaind the number of system outputs
and sentences per system assessed. In order to give an itteatEnslation quality exhibited by
automatic systems, average adequacy and fluency scords@apr@vided.

3.4.3 Evaluating Individual Metrics

Prior to studying the effects of metric combination, we gttitk isolated behaviour of individual
metrics. We have selected a set of metric representatioes éach linguistic level. Table 3.13
shows meta-evaluation results for the test beds descnib8ddtion 3.4.2, according both to human
likeness (KING) and human acceptabiliti {,;), computed over the subsets of sentences for which

"That would be assuming that all metrics operate in the sangeraf values, which is not always the case.
Bhttp://www.nist.gov/speech/tests/summaries/2005/mt0 5.htm
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KING Rant

Level Metric AEgs | CEgs | AEgs | CEgs || AEgs | CEgs | AEgs | CEgs
1-WER 0.70| 0.51| 048| 061 0.53| 0.47| 0.38| 0.47

1-PER 0.64| 0.43| 045| 058| 050 0.51| 0.29| 0.40

1-TER 0.73| 0.54| 053] 0.66| 054| 0.50| 0.38| 0.49

BLEU 0.70| 0.49| 0.52| 059| 050| 046| 0.36| 0.39

NIST 0.74| 0.53| 0.55| 0.68| 0.53| 0.55| 0.37| 0.46

Lexical GTM.el 0.67| 0.49| 048| 061 041 050| 0.26| 0.29
GTM.e2 0.69| 0.52| 051| 0.64| 0.49| 054| 0.43| 048

ROUGE, 0.73| 0.59| 049| 0.65| 0.58| 0.60| 0.41| 0.52
ROUGHEy 0.75| 0.62| 0.54| 0.68| 0.59| 057| 0.48| 0.54
METEOR1syn 0.75| 0.56| 0.57| 0.69| 056| 056| 0.35| 041

SPO,-x 0.66| 0.48| 049| 059| 051 057 0.38| 041

SPO. - 0.65| 0.44| 046| 059| 055| 0.58| 0.42| 041

Shallow | SP-NIST, 0.73| 0.51| 055| 0.66| 0.53| 054| 0.38| 0.44
Syntactic | SP-NIST, 0.79| 0.60| 0.56| 0.70| 0.46| 0.49| 0.37| 0.39
SP-NISTy, 0.69| 0.48| 0.49| 059| 0.32| 0.36| 0.27| 0.26
SP-NIST, 0.60| 0.42| 039 052 0.26| 0.27| 0.16| 0.16
DP-HWC, 0.58| 0.40| 042| 053] 041| 0.08| 0.35| 0.40
DP-HWC. 0.50| 0.32| 0.33| 041) 0.41| 0.17| 0.38| 0.32
DP-HWC. 0.56| 0.40| 0.37| 0.46| 042| 0.16| 0.39| 043

DP-O;-% 0.58| 0.48| 041| 052| 0.52| 0.48| 0.36| 0.37
Syntactic | DP-O.-x 0.65| 0.45| 044| 055| 049| 051 0.43| 041
DP-O,-* 0.71| 057| 054| 0.64| 055| 0.55| 0.50| 0.50

CP-O,-x 0.67| 0.47| 047 0.60| 0.53| 057| 0.38| 0.46

CP-Oq* 0.66| 0.51| 049| 0.62| 0.57| 059| 0.45| 0.50

CP-STM 0.64| 0.42| 043| 058 0.39| 0.13| 0.34| 0.30
NE-O-*x 0.65| 0.45| 046| 057| 047| 056| 0.32| 0.39

Shallow | SR-O,-x 0.48| 0.22| 0.34| 041) 0.28| 0.10| 0.32| 0.21
Semantic | SR-O,, 0.36| 0.13| 0.24| 0.27| 0.27| 0.12| 0.25| 0.24
DR-O,.-x 0.62| 0.47| 050| 055| 047| 0.46| 0.43| 0.37
Semantic | DR-O,,-* 0.58| 0.42| 043| 050| 0.37| 0.35| 0.36| 0.26
Optimal Combination | 0.79| 0.64]| 0.61] 0.70] 0.64] 0.63] 054] 0.61|

Table 3.13: NIST 2004/2005 MT Evaluation Campaigns. Metateation results
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human assessments are available. Highest correlatioficoeefs attained in each task appear high-
lighted.

The first observation is that the two meta-evaluation gatprovide very similar metric quality
rankings for a same test bed. This seems to indicate that thex relationship between the two
meta-evaluation criteria employed. We have confirmed thiigition by computing the Pearson
correlation coefficient between values in columns 1 to 4 &edl tounterparts in columns 5 to 8.
There exists a high correlatiof (= 0.79).

A second observation is that metric quality varies signifilyafrom task to task. This is due to
the significant differences among the test beds employedsébre related to three main aspects:
language pair, translation domain, and system typologyt ifgiance, notice that most metrics
exhibit a lower quality in the case of the ‘AE test bed. The reason is that, while in the rest
of test beds all systems are statistical, the gj&AHBest bed presents, as we have seen in Section
3.2, the particularity of providing automatic translasoproduced by heterogeneous MT systems.
The fact that most systems are statistical also explains whgeneral, lexical metrics exhibit a
higher quality. However, highest levels of quality are notil cases attained by metrics at the
lexical level (see highlighted values). In fact, there isy@ne metric, ROUGHE;’ (based on lexical
matching), which is consistently among the top-scoring lirtest beds according to both meta-
evaluation criteria. The underlying cause is simple: aurneetrics do not provide a global measure
of quality, but account only for partial aspects of it. Apfdm evincing the importance of the
meta-evaluation process, these results strongly sudgesieied for conducting heterogeneous MT
evaluations.

3.4.4 Finding Optimal Metric Combinations

In this section, we study the applicability of the two cordiion strategies above presented. Op-
timal metric sets are determined by maximizing over theaesponding meta-evaluation measure
(KING or Rg,;). However, because exploring all possible combinations ma viable, we have
used a simple algorithm which performs an approximate kearc

1. Individual metrics are ranked according to their qualKyNG or R,,,;).

2. Following that order, metrics are individually added he bptimal set of metrics only if in
doing so the global quality increases.

Since no training is required it has not been necessary tp &deeld-out portion of the data
for development (see Section 3.4.5 for further discussi@ptimal metric sets are displayed in Ta-
ble 3.14. Inside each set, metrics are sorted in decreasadgygorder. The ‘Optimal Combination’
row in Table 3.13 shows the quality attained by these setapated under QUEEN in the case of
KING optimization, and undewLC in the case of optimizing oveR,,,;. In most cases optimal sets
consist of metrics operating at different linguistic les;ahostly at the lexical and syntactic levels.
This is coherent with the findings in Section 3.4.3. Metritthe semantic level are selected only
in two cases, corresponding to tiig,,, optimization in ‘AEy,’ and ‘CEy,’ test beds. Also in two
cases, corresponding to the KING optimization in AEand ‘CEys’, it has not been possible to
find any metric combination which outperforms the best iitlial metric. This is not necessarily a
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Opt. K(AE.04) = {SP-NIST}

Opt.K(CE.04) = {ROUGEy,SP-NIST,ROUGE}

Opt.K(AE.05) = {METEOR,,syn, SP-NIST, DP-O,-*}

Opt.K(CE.05) = {SP-NIST}

Opt.R(AE.04) = {ROUGEy, ROUGE,, CP-Q.-*, METEOR, s, DP-O,-* DP-O;-*,
GTM.e2DR-O,-*, CP-STM

Opt.R(CE.04) = {ROUGE,,CP-Q.-*,ROUGEy, SP-Q-*, METEOR, 5, DP-O,-*,
GTM.e21-WERDR-O,-*}

Opt.R(AE.05) = {DP-O,-*,ROUGEy}

Opt.R(CE.05) = {ROUGEy,ROUGE,, DP-O,-*,CP-O.-*,1-TER GTM.e2
DP-HWG,, CP-STM

Table 3.14: NIST 2004/2005 MT Evaluation Campaigns. Optimetric sets

Metric KING Ront
Set AE04 CE04 AE 05 CE05 AE 04 CE04 AE 05 CE05
Opt.K(AE.04) 0.79| 0.60| 0.56| 0.70| 0.46| 0.49| 0.37| 0.39
Opt.K(CE.04) 0.78| 0.64| 0.57| 0.67| 049| 051| 0.39| 0.43
Opt.K(AE.05) 0.74| 0.63| 0.61| 0.66| 0.48| 051| 0.39| 0.42
Opt.K(CE.05) 0.79| 0.60| 0.56| 0.70| 0.46| 0.49| 0.37| 0.39

Opt.R(AE.04) 0.62| 0.56| 052 049| 0.64| 0.61| 0.53| 0.58
Opt.R(CE.04) 0.68| 0.59| 055 0.56| 0.63| 0.63| 0.51| 0.57
Opt.R(AE.05) 0.75| 0.64| 059 069| 0.62| 0.60| 0.54| 0.57
Opt.R(CE.05) 0.64| 056| 051 052| 0.63| 057 0.53| 0.61

Table 3.15: NIST 2004/2005 MT Evaluation Campaigns. Pditalof combination strategies

discouraging result. After all, in these cases, the besticrebne achieves already a very high qual-
ity (0.79 and 0.70, respectively). The fact that a singléueasuffices to discern between manual
and automatic translations indicates that system outpetsasily distinguishable, possibly because
of their low quality and/or because systems are all baseti@sdme translation paradigm.

3.4.5 Portability across Scenarios

It can be argued that metric set optimization is itself anirgj process; each metric would have an
associated binary parameter controlling whether it iscteteor not. For that reason, in Table 3.15,
we have analyzed the portability of optimal metric sets¢rpas test beds and (ii) across combina-
tion strategies. As to portability across test beds (i@oss language pairs and years), the reader
must focus on the cells for which the meta-evaluation ¢ateguiding the metric set optimization
matches the criterion used in the evaluation, i.e., thdeafiggnd bottom-right 16-cell quadrangles.
The fact that the 4 values in each subcolumn are in a veryaimahge confirms that optimal metric
sets port well across test beds.

The same table shows the portability of optimal metric setess combination strategies. In
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other words, although QUEEN and.C are thought to operate on metric combinations respectively
optimized on the basis of human likeness and human acchfytalve have studied the effects of
applying either measure over metric combinations optichiae the basis of the alternative meta-
evaluation criterion. In this case, the reader must compardeft vs. bottom-left (KING) and
top-right vs. bottom-right R,,:) 16-cell quadrangles. It can be clearly seen that optimadtime
sets, in general, do not port well across meta-evaluatiterier, particularly from human likeness to
human acceptability. However, interestingly, in the cdsAB o5’ (i.e., heterogeneous systems), the
optimal metric set ports well from human acceptability tarfan likeness (see numbers in italics).
We speculate that system heterogeneity has contributetivetysfor the sake of robustness.

3.5 Heterogeneous Automatic MT Error Analysis

Error analysis is one of the crucial stages in the developrogrie of an MT system. However,
often not enough attention is paid to this process. The re@sthat performing an accurate error
analysis is a slow and delicate process which requiressiviernuman labor. Part of the effort is
devoted to high-level analysis which involves a preciseldadge of the architecture of the system
under development, but there is also a heavily time-consgitoiw-level part of the process related
to the linguistic analysis of translation quality, which txieve that could be partially automatized.

Our proposal consists in having automatic evaluation efpiay a more active role in this
part of the work. In our opinion, in the current error anadystheme, evaluation metrics are only
minimally exploited. They are used as quantitative measure., so as to identify low/high qual-
ity translations, but not as genuine qualitative measurgstwallow developers to automatically
obtain detailed linguistic interpretations of the tratisia quality attained. This limited usage of
automatic metrics for error analysis is a direct consegei@idhe shallow similarity assumptions
commonly utilized for metric development. Until very retlgnmost metrics were based only on
lexical similarity.

However, the availability of metrics at deeper linguisgeéls, such as those described in Sec-
tions 2.4.3 and 3.1, opens a path towards heterogeneounaticdMT error analysis. This type of
analysis would allow system developers to analyze the pegnce of their systems with respect
to different quality dimensions (e.g., lexical, syntactimd semantic), and at different levels of
granularity —from very fine aspects of quality, related tevheell certain linguistic structures are
transferred, to coarser ones, related to how well the t@éinal under evaluation complies with the
expected overall lexical/syntactic/semantic refererizeetire. Thus, developers could have a more
precise idea of what quality aspects require improvemensid®s, in this manner, they would be
allowed to concentrate on high-level decisions.

3.5.1 Types of Error Analysis

Error analyses may be classified, from the perspective ofystem developer, according to two
different criteria. First, according to the level of abstian:

e document-level analysisj.e., over a representative set of test cases. Such typeabfsis
allows developers to quantify the overall system perforcearfor that reason, it is often also
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referred to as analysis at the system level.

e sentence-level analysis,e., over individual test cases. This type of analysisvasldevelop-
ers to identify translation problems over particular insts.

Second, according to the evaluation referent:

e isolated analysis,.e., with no referent other than human translations. Type tof analysis
allows developers to evaluate the individual performarfaber MT system, independently
from other MT systems.

e contrastive analysis,i.e., on the performance of MT systems in comparison to okfi€r
systems. This type of analysis is crucial for the MT resea@mmmunity so as to advance
together, by allowing system developers to borrow sucaksséchanisms from each other.

3.5.2 Experimental Setting

We have applied our approach to several evaluation test foeaisdifferent MT evaluation cam-
paigns. In the following, we exemplify the application oté@geneous MT error analysis through
the case of the Arabic-to-English exercise from the 2005T\VE evaluation campaign discussed
in Section 3.2.3 (Le & Przybocki, 2005). This test bed préséme particularity of providing au-
tomatic translations produced by heterogeneous MT systéherefore, it constitutes an excellent
material in order to test the applicability of our approadtor that purpose, we have focused on
the automatic outputs by LinearB and the best statisticsilesy at hand (from now on, referred
to as ‘Best SMT’). Assisted by the heterogeneous metricvgeistudy system performance over a
number of partial aspects of quality. We have performedatsadl and contrastive analyses, both at
the document and sentence levels.

3.5.3 Error Analysis at the Document Level

Tables 3.16 and 3.17 show evaluation results at the docuevahfor several metric representatives.
Table 3.16 reports on the lexical and syntactic dimensiehgreas Table 3.17 focuses on semantic
features. It can be observed (columns 2-3) that, as we m®drem the lexical level to deeper
linguistic aspects, the difference in favor of the Best SM$tem diminishes and, indeed, ends
reversing in favor of the LinearB system when we enter théagfit and semantic levels.

The heterogeneous set of metrics also allows us to analyyespecific aspects of quality. For
instance, lexical metrics tell us that the LinearB systemsdwot match well the expected reference
lexicon. This is corroborated by analyzing shallow-sytitasimilarities. For instance, observe how,
while Best SMT is better than LinearB according'$®-0,-JN|V' metrics, which compute lexical
overlap respectively over adjectives, nouns and verbgdrB is better than Best SMT at translating
determiners‘DP-0O.-det’) and auxiliary verbs‘DP-O.-aux’), closed grammatical categories which
are, presumably, less prone to suffer the effects of a bileséchl selection.

At the syntactic level, differences between both systemasrather small. Metrics based on
dependency parsing assign the LinearB system a highetyguath overall DP-HWC,.-4" and‘DP-
0,-+") and with respect to finer aspects such as the translatiomitd Giomplements'®P-0,.-fc’),
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Linear | Best

Level Metric KING B SMT
1-PER 0.63 0.65| 0.70

1-TER 0.70 0.53| 0.58

1-WER 0.67 0.49| 0.54

Lexical BLEU 0.65 0.47| 0.51
GTM (e=2) 0.66 0.31| 0.32

NIST 0.69| 10.63| 11.27
ROUGHEy 0.68 0.31| 0.33
METEORy1syn 0.68 0.64| 0.68

SPO,-x 0.64 0.52| 0.55

SPO,-J 0.26 0.53| 0.59

SPO,-N 0.53 0.57| 0.63

SPO,-V 0.43 0.39| 041

SP-O % 0.63 0.54| 0.57

Shallow | SPO_.-NP 0.60 0.59| 0.63
Syntactic | SP-O.-PP 0.38 0.63| 0.66
SPO.-VP 0.41 0.49| 0.51
SP-NIST-5 0.69| 10.78| 11.44
SP-NIST,-5 0.71 8.74| 9.04
SP-NIST,;,-5 0.65 6.81| 6.91
SP-NIST.-5 0.57 6.13| 6.18
DP-HWC,-4 0.59 0.14| 0.14
DP-HWC.-4 0.48 0.42| 0.41
DP-HWC,.-4 0.52 0.33| 0.31

DP-O;-x 0.58 0.41| 0.43

DP-O.-x 0.60 0.50| 0.51
DP-O.-aux 0.14 0.56| 0.54
DP-O.-det 0.35 0.75| 0.73
Syntactic | DP-O,- 0.66 0.36| 0.36
DP-O,-fc 0.21 0.26| 0.24

DP-O,-i 0.60 0.44| 0.43
DP-O,-obj 0.43 0.36| 0.35

DP-O,-s 0.47 0.52| 0,45

CP-O.~* 0.63 0.50| 0.53
CP-O.-VP 0.59 0.49| 0.52
CP-STM-9 0.58 0.35| 0.35

Table 3.16: NIST 2005 Arabic-to-English. Document leveberanalysis (lexical and syntactic
features)
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Linear | Best

Level Metric KING B SMT
NE-M % 0.32 0.53| 0.56
NE-M.-ORG 0.11 0.27| 0.29
NE-M.-PER 0.13 0.34| 0.34

Shallow | SR-M,-% 0.50 0.19| 0.18
Semantic | SR-M,.-A0 0.33 0.31| 0.30
SR-M,.-Al 0.28 0.14| 0.14

SR-O, 0.41 0.64| 0.63

SR-O,-* 0.53 0.36| 0.37
SR-O,-AM-TMP 0.13 0.39| 0.38

DR-O,-% 0.59 0.36| 0.34
DR-O,.-card 0.12 0.49| 0.45

DR-O,.-dr 0.56 0.43| 0.40
DR-0O,-eq 0.12 0.17| 0.16
Semantic | DR-O,-named 0.38 0.48| 0.45
DR-O,.-pred 0.55 0.38| 0.36
DR-O,.-prop 0.39 0.27| 0.24
DR-O,.-rel 0.56 0.38| 0.34
DR-STM-9 0.40 0.26| 0.26

71

Table 3.17: NIST 2005 Arabic-to-English. Document leveberanalysis (semantic features)
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clause relations'®P-O.,.-i'), verb objects ‘DP-0,.-obj’), and specially surface subjectBR-0,.-s’).
In contrast, metrics based on constituent analysis tentefempthe Best SMT system except for the
‘CP-STM-9' metric which assigns both systems the same quality.

As to shallow-semantic metrics, it can be observed thatdriBénas more problems than Best
SMT to translate NEs, except for the case of person namekeloase of semantic arguments and
adjuncts the two systems exhibit a very similar performanitk a slight advantage on the side of
LinearB, both overall'‘6R-M,.-x" and‘SR-0,’) and for fine aspects such as the translation of agent
roles (SR-M,-A0") and temporal adjunctsSR-M,.-AM-TMP’). Also, it can be observed that both
systems have difficulties to translate theme roigR{\7,-A1").

At the semantic level, observe how there is not a single metnich ranks the Best SMT system
first. LinearB is consistently better at translating basscourse representation structur@&R-O,.-
dr'), cardinal expressionsDR-0O,-card’), NEs (DR-0O,-named), equality conditions‘DR-0,-eq’),
predicates ‘DR-O,.-pred), relations DR-O,-rel’) and propositional attitudesDR-O.,.-prop’), and
overall (DR-0O,-«"). It can also be observed that both systems have problemarnsldate equality
conditions. Finally, both systems are assigned the samiygaecording to semantic tree matching
(‘DR-STM-9").

Meta-evaluation in the Context of Error Analysis

In the previous experiment, metric quality has been evatuah the basis of human likeness, i.e., in
terms of the metric ability to discern between manual andraatic translations We have computed
human likeness through the KING measure. As we have alrezely in Section 3.4.1, KING is
a measure of discriminative power. For instance, if a meibi@ins a KING of 0.6, it means that
in 60% of the test cases, it is able to explain by itself théed#nce in quality between manual and
automatic translations. For KING computation we have usey the automatic outputs provided
by the LinearB and Best SMT systems. However, we have notdamio segments counting on
human assessments, but all segments have been used.

In the context of error analysis, KING serves as an estimiateedmpact of specific quality as-
pects on the system performance. Inthat respect, it candss\@l (Tables 3.16 and 3.17, column 1)
that metrics at the lexical, shallow-syntactic and syitdetels attain slightly higher KING values
than metrics based on semantic similarities. Best reselt$gmily appear highlighted. We spec-
ulate that a possible explanation may be found in the pedioo® of linguistic processors whose
effectiveness suffers a significant decrease for deepelsl®f analysis. Also, observe that finer
grained metrics such asP-0,-J' (i.e., lexical overlap over adjectivesNE-M.-ORG'’ (i.e., lexical
matching over organization names)'DR-0,.-card’ (i.e., lexical overlap over cardinal expressions)
exhibit a much lower discriminative power. The reason ig thay cover very partial aspects of
quality.

3.5.4 Error Analysis at the Sentence Level

The heterogeneous set of metrics allows us to analyze dliffelimensions of translation quality
over individual test cases. In this manner, we can bettackdar problematic cases according
to different criteria. For instance, we could seek tramnsfet lacking of subject (by looking at
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sentences with very lowbP-0O,.-s’) and/or agent role$R-0,.-A0’). Or, at a more abstract level, by
simultaneously relying on syntactic and semantic metrias,could, for instance, locate a subset
of possibly well-formed translations (i.e., high syntactimilarity) which do not match well the
reference semantic structure (i.e., low semantic sintyari

A Case of Analysis

We have inspected particular cases. For instance, Tab8@esents the case of sentence 637
in which according to BLEU the translation by Best SMT is redlirst, whereas according to
human assessments the translation by LinearB is judged operisr quality both in terms of
adequacy and fluency. This case is deeply analyzed in Tab®e 3n spite of its ill-formedness
the translation by Best SMT deceives all lexical metrics.rtiBaarly interesting is the case of
‘METEOR..syn’, @ Metric designed to deal with differences in lexical sedec by dealing with
morphological variations through stemming, and synonymsugh dictionary lookup. METEOR
is in this case, however, unable to deal with differencesanwordering.

In contrast, scores conferred by metrics at deeper lirigustels reveal, in agreement with
human evaluation, that LinearB produced a more fluent (s¥intsimilarity) and adequate (semantic
similarity) translation. Overall syntactic and semantiorgs (e.g.,\DP-O,.-x, ‘CP-STM-9’, ‘SR-O,.-

x, ‘DR-0,-x and'DR-STM-9'), all lower than 0.6, also indicate that important piecemfdrmation
were not captured or only partially captured.

Getting into details, by analyzing fine shallow-syntactmoitarities, it can be observed, for in-
stance, that, while LinearB successfully translated slapgoportion of singular nouns, Best SMT
translated more proper nouns and verb forms. Analysis asyh&actic level shows that LinearB
captured more dependency relations of several types (eogd adjunct modifiers, verb objects,
nominal complements of prepositions, and relative clgusex translated a larger proportion of
different verb phrase types (e.g., noun, prepositional, \anb phrases, and subordinated clauses).
As to shallow-semantic similarity, it can be observed thatlevel of lexical overlap over verb sub-
jects and objects attained by LinearB is significantly hightt the semantic level, the discourse
representation associated to LinearB is, in general, mordas to the reference discourse repre-
sentations. Only in the case of predicate conditions, bgttems exhibit a similar performance.

Difficult Cases

One of the main problems of current automatic MT evaluatia@thods is that their reliability de-
pends very strongly on the representativity of the set adregfce translations available. In other
words, if reference translations cover only a small parhefdpace of valid solutions, the predictive
power of automatic metrics will decrease. This may be paldity dangerous in the caseofgram
based metrics, which are not able to deal with differencdexital selection. For instance, Table
3.20 presents a case in which the LinearB is unfairly peedlizy lexical metrics for its strong
divergence with respect to reference translations whigeBhst SMT system is wrongly favored
for the opposite reason. LinearB translation receives bagites from human assessors, but a null
BLEU score. In contrast, the Best SMT system attains a higkBlscore, but receives low scores
from human assessors.
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Reference 1:| Over 1000 monks and nuns , observers and scientists fron36vavuntries
and the host country attended the religious summit heldh®fitst time
in Myanmar which started today , Thursday .
2: | More than 1000 monks , nuns , observers and scholars from timane30
countries , including the host country , participated intl@yious summit
which Myanmar hosted for the first time and which began on Jdhay .
3: | The religious summit , staged by Myanmar for the first time began on
Thursday , was attended by over 1,000 monks an nuns , obsemner
scholars from more than 30 countries and host Myanmar .
4: | More than 1,000 monks , nuns , observers and scholars frora than 30
countries and the host country Myanmar participated indligious summit ,
which is hosted by Myanmar for the first time and which begaf lbarsday .
5: | The religious summit , which started on Thursday and waseldstr the first
time by Myanmar , was attended by over 1,000 monks and nurseyedrs
and scholars from more than 30 countries and the host colviyianmar .
Information: | (1) — subject: over/morethan 1,000 monks and nuns, observers and
scientists/scholars from over/matiean 30 countries , and/including
the host countnaction: attended/participatedh
(2) — subject: the religious summiaction: began/started
temporal: on Thursday
(3) — object: the religious summiaction: hostedsubject: by Myanmar
mode: for the first time
LinearB: | 1000 monks from more than 30 States and the host State Myaatteaded
the Summit , which began on Thursday , hosted by Myanmar #ofitkt time .
Best SMT: | Religious participated in the summit , hosted by Myanmaittierfirst time
began on Thursday , as an observer and the world of the 100R numn
from more than 30 countries and the host state Myanmar .

Table 3.18: NIST 2005 Arabic-to-English. Test case #637
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Linear | Best

Level Metric B SMT
Human Adequacy 3 2
Fluency 3.5 2

1-TER 0.53| 0.51

Lexical BLEU 0.44| 0.45
METEORysyn 0.59| 0.64

SPO,-x 0.52| 0.51

Shallow | SP-O,-NN 0.67| 0.38
Syntactic | SP-O,-NNP 0.60| 0.75
SPO,-V 0.40| 0.75
DP-HWC,-4 0.17| 0.16

DP-O,-x 0.46| 0.44
DP-O,-mod 0.62| 041
DP-O,.-obj 0.29| 0.00
DP-O,-pcomp-n 0.71| 0.39
Syntactic | DP-O,.-rel 0.33| 0.00
CP-O.-* 0.59| 0.48
CP-O.-NP 0.59| 0.55
CP-O.-PP 0.57| 0.54
CP-O.-SB 0.73| 0.00
CP-O.-VP 0.64| 0.42
CP-STM-9 0.34| 0.23

Shallow | SR-O, 0.84| 0.25
Semantic | SRO,-* 0.56| 0.18
SR-0O,-A0 0.44| 0.10
SR-O,-Al 0.57| 0.28

DR-O,.-x 0.45| 0.34
DR-O,.-dr 0.57| 0.40
Semantic | DR-O,-nam 0.75] 0.24
DR-O,.-pred 0.44| 0.45
DR-O,.-rel 0.51]| 0.32
DR-STM-9 0.32| 0.29

Table 3.19: NIST 2005 Arabic-to-English. Error analysigest case #637
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Metrics at deeper linguistic levels partly overcome thislgem by inspecting syntactic and
semantic structures. However, as it can be observed in gessected, these structures may also
exhibit a great variability. For instance, the translatlonLinearB is considerably shorter than
expected according to human references. Besides, whiteerafe translations use “you must”
or “you have”, the LinearB translation uses “you should”.s@l LinearB selected the verb form
“cooperate” instead of “be more united and cooperative?, €ble 3.21 shows the scores conferred
by several metrics. It can be observed how lexical metrioggetely fail to reflect the actual quality
of the LinearB output. Indeed, only some dependency-basdas are able to capture its quality
(e.g.,'DP-HWC,").

In the case depicted in Table 3.22, differences are mos#yectto the sentence structure. Table
3.23 shows the scores conferred by several metrics. It carbgerved, for instance, that several
lexical metrics are able to capture the superior qualityefltinearB translation. In contrast, metrics
at deeper linguistic levels do not reflect, in general, thifeince in quality. Interestingly, only
some syntax-based metrics confer a slightly higher scotanearB (e.g.,'SP-O,-+" ‘DP-HWC,,-

4’ ‘CP-0O,-+" ‘CP-O.-+", etc.). All these metrics share the common property of cdimguexical
overlap/matching over syntactic structures or grammiatiategories.

In order to deal with divergences between system outputgefedence translations, other au-
thors have suggested taking advantage of paraphrasingrssppas to extend the reference material
(Russo-Lassner et al., 2005; Zhou et al., 2006; Kauchak &iBgr 2006; Owczarzak et al., 2006).
We believe the two approaches could be combined.

3.6 Conclusions of this Chapter

We have suggested a novel direction towards heterogenesomatic MT evaluation based on a
rich set of metrics operating at different linguistic lev@iexical, syntactic and semantic). We have
shown that metrics based on deep linguistic informatiomtésstic/semantic) are able to produce
more reliable system rankings than metrics which limititlsgiope to the lexical dimension, spe-
cially when the systems under evaluation are of a differane.

Linguistic metrics present only a major shortcoming. Thaly pn automatic linguistic proces-
sors. This implies some important limitations on their &adility:

Tagging Errors Automatic tools are prone to error, specially for the deelee®ls of analysis.

Processing Speed.inguistic analyzers are typically too slow to allow for rsa®& evaluations, as
required, for instance, in the case of system development.

Availability Linguistic analyzers are not equally available for all laages.

As to parsing accuracy, experimental results (see Seclghand 3.3) have shown that these
metrics are very robust against parsing errors at the doatisystem level. This is very interesting,
taking into account that, while reference translations sangposedly well formed, this is not the
case of automatic translations. At the sentence level, erveesults indicate that metrics based on
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deep linguistic analysis are, in general, not as reliab&all/quality estimators as lexical metrics,

at least when applied to low quality translations (e.g.,dhage discussed in Section 3.3). However,
we have shown that backing off to lexical similarity is a dedin effective strategy so as to improve
the performance of these metrics.

Regarding the problems related to parsing speed and lackadélle tools, in the future, we
plan to incorporate more accurate, and possibly fasteguistic processors, also for languages
other than English, as they become publicly available. Rstaince, we are currently adapting these
metrics to Spanish and Catalan.

We have also exploited the possibility of combining metacslifferent linguistic levels. Our
approach offers the advantage of not having to adjust ttagivelcontribution of each metric to
the overall score. We have shown that non-parametric schamgea valid alternative, yielding a
significantly improved evaluation quality at the sentermel, both in terms of human likeness and
human acceptability. Let us note, however, that we haveniehded to provide a magic recipe,
i.e., a combination of metrics which works well in all testlseln the same manner that the quality
aspects distinguishing high quality from low quality trexins may vary for each test bed, optimal
metric combinations must be determined in each case. Tiseliipof a magic recipe for automatic
MT evaluation is still a very challenging target for preskihP. For future work, we plan to perform
an exhaustive comparison between parametric and non-pafarschemes to metric combination
in order to clarify the pros and cons of either option.

As an complementary result, we have shown how to apply Istgumetrics for the purpose of
error analysis. Our proposal allows developers to rapidifaio detailed automatic linguistic re-
ports on their system’s capabilities. Thus, they may comaentheir efforts on high-level analysis.
For future work, we plan to enhance the interface of the e&ln tool, currently in text format,
so as to allow for a fast and elegant visual access from difteviewpoints corresponding to the
different dimensions of quality. For instance, missing artially translated elements could appear
highlighted in different colors. Besides, evaluation muas generate, as a by-pass product, syntac-
tic and semantic analyses which could be displayed. Thiddnallow users to separately analyze
the translation of different types of linguistic elemergsy(, constituents, relationships, arguments,
adjuncts, discourse representation structures, etc.).

We strongly believe that future MT evaluation campaignsusthtenefit from the results pre-
sented by conducting heterogeneous evaluations. Fongestthe following set could be used:

{‘ROUGEy’, ‘METEOR sy, ‘DP-HWC,-4’, ‘DP-O.-+", ‘DP-O;-+", ‘DP-O,-*',
‘CP-STM-9’, 'SRO,-«", 'SR-O,,,, ‘DR-O,p-x" }

This set includes several metric representatives fronawdifft linguistic levels, which have been
observed to be consistently among the top-scoring over a vadety of evaluation scenarios. In
that respect, we have successfully applied our evaluatiethadology to several recent shared
evaluation tasks:

e ACL 2008 Third Workshop On Statistical Machine TranslatfgiMT’08) (Callison-Burch
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et al., 2008}°
e EACL 2009 Fourth Workshop On Statistical Machine Transta{WMT’09)2°.

In particular, theULC combined metric exhibited the most robust behavior, otpeing all
other submitted metrics in terms of average correlatior difeerent types of human assessments.
We recently participated as well in thélST Metrics MATR Challenge 2008 on Automatic MT
Evaluatiorf!. In contrast to other experiences, in this task linguistitnns exhibited a mediocre
performance. Results are pending to be clarified.

For future work, we are also planning to extend the suggestethodology to perform sta-
tistical significance tests over heterogeneous metric ggicch serve to guarantee the statistical
significance of evaluation results according to a wide rasfgaeasures simultaneously.

Finally, as an additional result of our work, we have devetbthe 1Qr Framework for MT
Evaluation, which is freely and publicly available for raseh purposes. Further details are avail-
able in Section 8.2.

Shttp://www.statmt.org/wmt08/

Dhttp://www.statmt.org/wmt09/ . At the time of writing this document, official results weretiyet publicly
available

Zlhttp://www.nist.gov/speech/tests/metricsmatr/

22The 1Qur (Inside Qarla Machine Fanslation) Evaluation Framework is released under LGBénice of the Free
Software Foundation. 1@ may be freely downloaded http://www.lsi.upc.edu/ ~nlp/IQMT .
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LinearB:
Best SMT:

You should cooperate and support one another .
You that you will be more and more cooperative unit some of 3od
support each other .

Reference 1:

You must be more united and more cooperative and you musbsupp
each other .

You must be more united and cooperative and supportive ¢f ether .
You must be more united and cooperative and supportive ¢f ether .
You have to be more united and more cooperative , and supaciitaher .
You have to be more united and more cooperative and you haugpfmort
each other .

Table 3.20: NIST 2005 Arabic-to-English. Translation C#%49.

Linear | Best

Level Metric B SMT
Human Adequacy 4 1.5
Fluency 5 1.5

1-PER 0.36| 0.62

1-TER 0.36| 0.49

Lexical BLEU 0.00| 0.37
NIST 1.64| 9.42
METEORysyn 0.32| 0.67

SPO,-x 0.25| 0.46

Shallow | SPO,-V 0.17| 0.40
Syntactic | SP-O.-x 0.19| 0.43
SP-O.-NP 0.43| 0.50
SPO.-VP 0.14| 0.40
DP-HWC,-4 0.07| 0.12
Syntactic | DP-HWC.-4 0.32| 0.19
DP-HWC, -4 0.32| 0.25
CP-STM-4 0.33| 0.36

Shallow | SR-M,- 0.14| 0.67
Semantic | SR-O,-% 0.10| 0.75
DR-O,-* 0.17| 0.26
DR-O,p-* 0.24| 0.26
Semantic | DR-O,,,-drs 0.27| 0.30
DR-O,,-pred 0.29| 0.40
DR-O,-rel 0.30| 0.24
DR-STM-4 0.25| 0.45

Table 3.21: NIST 2005 Arabic-to-English. Error analysigest case #149
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LinearB: | Itis important to analyze and address these problems gyoper
Best SMT: | It should be to analyze these problems and take them up fyaper

Reference 1:| We must analyze these problems and handle them correctly .
2. | So we must analyze these problems and take them in the right wa
3: | We must correctly analyze and properly handle these prablem
4: | And so itis imperative that we analyze these problems anivdda

them properly .

5: | And so we must correctly analyze and properly handle thesiglgons .

Table 3.22: NIST 2005 Arabic-to-English. Translation C#g28.



3.6. CONCLUSIONS OF THIS CHAPTER

Linear | Best

Level Metric B SMT
Human Adequacy 4.5 2.5
Fluency 5 2.5

1-PER 0.63| 0.48

1-TER 0.55| 0.48

Lexical BLEU 0.00| 0.46
NIST 7.82| 9.97
ROUGEy 0.25| 0.29
METEORnsyn 0.54| 0.44

Shallow | SPO,-x 0.44| 0.39
Syntactic | SPO,-PRP 0.50| 0.33
SPO.-~x 0.28| 0.38

DP-O % 0.48| 0.47
DP-HWC,-4 0.23| 0.16

DP-HWC -4 0.31| 0.42
DP-HWC. -4 0.21| 0.43

DP-O,-x 0.25| 0.36

DP-O,. 0.44| 0.43
Syntactic | DP-O,._mod 0.11| 0.33
DP-O, s 0.50| 0.50

CP-O,-x 0.45| 041
CP-O,-RB 0.50| 0.50

CP-O.-* 0.43| 0.38
CP-O.-VP 0.42| 0.38
CP-STM-4 0.48| 0.59

Shallow | SR-O,-% 0.42| 0.44
Semantic | SR-O, 0.88| 0.86
DR-O,-x 0.20| 0.36
DR-O,p-% 0.52| 0.60
Semantic | DR-O,.-drs 0.22| 0.37
DR-O,.-pred 0.25| 0.33
DR-O,.-rel 0.20| 0.45
DR-STM-4 0.25| 0.33

Table 3.23: NIST 2005 Arabic-to-English. Error analysidast case #728
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Chapter 4

Statistical Machine Translation

SMT systems are characterized by generating translatisimg statistical models whose param-
eters are estimated from the analysis of large amounts ioigb#l text corpora. SMT is today
the dominant approach to Empirical MT. SMT systems can bk ey quickly and fully auto-
matically, provided the availability of a parallel corpuggaing sentences from the two languages
involved. Several toolkits for the construction of mosttsféomponents, including automatic word
alignment, language modeling, translation modeling armbdieg, have been made available in the
last years (Knight et al., 1999; Stolcke, 2002; Och & Ney,200ehn, 2004a; Crego et al., 2005a;
Patry et al., 2006; Koehn et al., 2006; Koehn et al., 2007)redeer, SMT systems achieve very
competitive results, at least when applied to the trainiognairt .

In the following, we give an overview of the recent yet frulthistory of SMT. In Section 4.1,
we present its fundamentals. Then, in Section 4.2, we descthie extension from word-based
to phrase-based translation, as well as some of the mosantlextensions suggested in the last
decade, with special focus on the incorporation of lingtilshowledge. Sections 4.3 and 4.4 discuss
dedicated approaches to the problems of word ordering amd saection, respectively. Finally,
Section 4.5 is a brief note on one of the main problems of SMI empirical models in general,
i.e., their domain dependence.

4.1 Fundamentals

Statistical Machine Translation is based on ideas borrdvesd the Information Theory field (Shan-
non, 1948; Shannon & Weaver, 1949). Weaver (1955) was firsuggest, in his “Translation”
memorandum, that cryptographic methods were possiblyicgippé to MT. However, many years
passed until, with the availability of faster computers &rde amounts of machine-readable data,
these ideas were put into practice. Brown et al. (1988; 19993) developed, at the IBM TJ
Watson Research Center, the first statistical MT systemeadirto-English system calléthndide
trained on a parallel corpus of proceedings from the Canddaliament (Berger et al., 1994).

1Consult, for instance, official results from the NIST Open Mialuation serieshftp://www.nist.gov/
speech/tests/mt/ ) and from the shared-tasks at the ACL workshops on Rtip(//www.statmt.org/ ).

85
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4.1.1 The Noisy Channel Approach

The main assumption underlying their approach is that thestation process can be seen as a
process of transmission of information throughagsy channelDuring the transmission through the
channel, for instance, between brain and mouth, the otigigaal which encodes a given message
in a given source language is distorted into a signal enggaiti@ same message in a different target
language. Given a distorted signal, it is possible to agprate the original undistorted signal as
long as we count on an accurate model of the distortion pspé&s, the noisy channel the signal
went through.

Brown et al. suggested that the distortion process could defad using statistical methods.
For that purpose, they took the view that every sentence énlamguage is a possible translation
of any sentence in the other. Accordingly, they assignedygvair of sentencesf, e) a probabil-
ity, P(e|f), to be interpreted as the probability that a human translatibproducee in the target
language as a valid translation when presented yiththe source languadeThen, based on the
noisy channel assumption, the automatic translation o¥@ngsource sentengémay be reformu-
lated as the problem of searching for the most probablettagggence according to the probability
table modeling the translation process. In other words, wstthoose so as to maximizé(e| f),
denoted:¢ = argmax, P(e|f). Applying Bayes’ rule,P(e|f) may be decomposed as:

P(fle)P(e)

(4.1)

Because the denominator does not depend, d@rcan be ignored for the purpose of the search:

¢ = argmax P(e|f) = argmax = argmax P(f|e)P(e) (4.2)

Equation 4.2 devises two probability models:

P(e), so-calledlanguage modelwhich is typically estimated from large monolingual como
The language modeling problem is recasted as the probleranopuating the probability of
a single word given all the words that precede it in a senter@@emmonly, only the last
few preceding words are considered. The reason is thatvagesthere would be so many
histories that probabilities could not be reliably estiatbfJelinek & Mercer, 1980). However,
recently, there is a growing ‘brute force’ trend for usindagj histories as possible, estimated
from large amounts of data extracted from the web (Brants.e2@07). Clearly, the more
coverage the better. On the other side, there have beenealsmbkworks suggesting the
construction of more accurate language models based cgr tioguistic information, either
syntactic (Charniak et al., 2003) or shallow-syntacticr¢khoff & Yang, 2005).

2For historical reasong’, ande are commonly used to respectively refer to source and tagggences, honoring the
French-to-Eglish Candide system.
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P(fle), so-calledranslation modelwhich is usually estimated from parallel corpora. Oridljyna
translation modeling was approached in a word-for-wordshaé&n excellent and very de-
tailed report on the mathematics of word-based translatiodels may be found in (Brown
et al., 1993), later extended by Och and Ney (2000). The Iyidgrassumption behind these
models is that every word in the target language is a possitslation of any word in the
source language. Thus, for every possible source-target pair (f,e) we must estimate
P(fle), i.e., the probability thaf was produced when translatiagusually calledalignment
probability. Word alignment is a vast research topic. Because anngtetond alignments
in a parallel corpus is a complex and expensive task, firghalent methods were all based
on unsupervised learning. The most popular approachesthisdtkpectation-Maximization
(EM) algorithm (Baum, 1972; Dempster et al., 1977). Howgevecently, there is a grow-
ing interest in applying supervised discriminative leagnio the problem of word alignment
(Taskar et al., 2005; Moore, 2005; Moore et al., 2006; Blums Cohn, 2006; Fraser &
Marcu, 2006).

Additionally, Brown et al. described two other models, nantlke distortion andfertility mod-
els. The distortion model accounts for explicit word reonmugz The fertility model allows for
one-to-many alignments, i.e., for the cases in which a wetthnslated into several words. Words
which do not have a translation counterpart are treatedaaslated into the artificial ‘null’ word.

Equation 4.2 devises a third component, deeodey responsible for performing thergmax’
search. MT decoding is a very active research topic. The miificulty is that performing an
optimal decoding requires an exhaustive search, which isx@onential problem in the length
of the input (Knight, 1999). Thus, a naive greedy implemeotaof the decoder is infeasible.
Efficient implementations based on dynamic programmindpriigies exist but for very simple
models. When complex reordering models are introducedagaict search is not feasible. For that
reason, most decoders perform a suboptimal search usyatyrbducing reordering constraints or
by heuristically pruning the search space. Among the mgstilao recent approaches to decoding,
we may findA* search (Och et al., 2001), greedy search (Germann, 2088k-sased beam search
(Koehn, 2004a), approaches based on integer programmargn@n et al., 2001), based on Graph
Theory (Lin, 2004), and based on parsing (Yamada & KnighD220/elamed, 2004).

4.1.2 Word Selection and Word Ordering

As we have seen, SMT systems address the translation taskesschn problem. Given an input
string in the source language, the goal is to find the outpingsin the target language which max-
imizes the product of a series of probability models overdbarch space defined by all possible
phrase patrtitions of the source string and all possibledexorgs of the translated units. This search
process implicitly decomposes the translation problem in separate but interrelated subprob-
lems: word selection and word ordering.

Word selection, also referred to Exical choice is the problem of deciding, given a woyfdin
the source sentence, which wardh the target sentence is the appropriate translation. gitois-
lem is mainly addressed by the translation maBéf|e), which serves as a probabilistic bilingual
dictionary. Translation models provide for each word in $berce vocabulary a list of translation
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candidates with associated translation probabilitiestiriguthe search there is another component
which addresses word selection, the language model. Thipaoent helps the decoder to move
towards translations which are more appropriate, in terfggammaticality, in the context of the
target sentence.

Word ordering refers to the problem of deciding which positmust the word translation can-
didatee occupy in the target sentence. This problem is mainly addreby the reordering model,
which allows for certain word movement inside the sentenégain, the language model may
help the decoder, in this case to move towards translatidgnshvwpreserve a better word ordering
according to the syntax of the target language.

4.2 Phrase-based Translation

Word translation models suggested by Brown et al. exhibiaanrdeficiency: the translation mod-
eling of the source context in which words occur is very wélatanslation probabilitiesP( f|e), do
not take into account, for instance, which are the wordosunaling f ande. Thus, this information
is ignored for the purpose of word selection. These modelstherefore, also unable to provide
satisfactory translations for the case of non-composatiphrases.

On the other hand, it is well known that the translation psscdoes not actually occur on
a word-for-word basis. On the contrary, there are many eegids in phrasal movement (Fox,
2002); words inside a phrase tend to stay together durimglataon. Therefore, a straightforward
improvement to word-based models consists in extendingstloge of the translation unit, i.e.,
moving from words tophrased. Phrase-based models allow fmany-to-manyalignments, thus
capturing phrasal cohesion in a very natural way. Phraseebmodels take local word context into
account, and allow for translation of non-compositionalgsies.

4.2.1 Approaches

A number of approaches to the estimation of phrase-basealmbdve been suggested. Wang
(1998) and Wang and Waibel (1998) were the first to demomsthet intuition shared with many
other researchers that word-based alignment was a majee aduerrors in MT. They proposed
a new alignment model based on shallow phrase structurematitally acquired from a parallel
corpus. At the same time, Alshawi et al. (1998) suggestedthaddor fully automatic learning
of hierarchical finite state translation models in whichgsas are modeled by the topology of the
transducers.

But the most influential approach was that by Och et al. (1988) presented a phrase-based
translation system in which phrases are modelealigament templatesThey used phrases rather
than single words as the basis for the alignment models.sBfnaere automatically induced from
word alignments in a parallel corpus. A group of adjacentdsdn the source sentence could be
aligned to a group of adjacent words in the target only if thheye consistent with word alignments,
i.e., there was no word in either phrase which was aligneditord outside their counterpart phrase.

3The termphrase’ used hereafter in this context refers to a sequence of wartdsacessarily syntactically motivated.
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The vote is postponed until all the translationshave been completed

.

Se aplaza la votacibn hasta que se hayan completado todastrdducciones

The vote is postponed Se aplaza la votacion

The vote is postponed until Se aplaza la votacién hasta

The vote is postponed until Se aplaza la votacién hasta que

The vote is postponed until Se aplaza la votacion hasta que se

The vote is postponed until all the Se aplaza la votacién hasta que se hayan
translations have been completed completado todas las traducciones

until hasta

until hasta que

until hasta que se

until all the translations have been hasta que se hayan completado todas las
completed traducciones

all the translations have been compleﬂedue se hayan completado todas las traducciones

all the translations have been completesle hayan completado todas las traducciones

Figure 4.1: Phrase Extraction. An example

An example of phrase alignment and phrase extraction is ethow Figure 4.1. This corre-
sponds to a case of English-Spanish translation extraocbed the corpus of European Parliament
Proceedings described in Section 5.1.1. At the top, theeraady find an English sentence and its
Spanish translation, as well as a set of possible word akgsndenoted by lines connecting words
in both sentences. Below, we show all bilingual phrase phis can be extracted following the
phrase-extract algorithm described in (Och, 2002). Eashcarresponds to a phrase pair. English
and Spanish counterparts appear at the right and left, atagglg. This example evinces also the
importance of the translation task in the sessions of theji@an Parliament. Let us mention, as a
curiosity, that over 10% of the times the wdtdhnslation’ was found in the corpus, it happened to
occur together with the worgroblem’.

Alignment templates associate source and target phrase®present the correspondence be-
tween the words in each phrase by keeping the word alignmémtmation. Koehn et al. (2003)
suggested a simpler approach, in which word alignmentseaneved from phrase translation pairs,
obtaining similar results. This approach will constituter baseline system in the following chap-
ters.

All the models listed above are similar in that they estintateconditional probabilitythat a
target phrase is generated as the appropriate translation of the sounesefi, i.e., P(e|f). In
contrast, Marcu and Wong (2002) presented a phrase-laisegrobability model which does not
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try to capture how source phrases are mapped into targetgdirbut rather how source and target
phrases could have been generated simultaneously out flweny af concepts, i.eP(f,e). The
main drawback of their approach was related to the computaticost of training and decoding
algorithms in terms of efficiency and memory requirements.

Other approaches to joint probability translation modes$texor instance, Tillmann and Xia
(2003) suggested a unigram phrase-based model basedrmuhbllphrase units, they callétbcks
More recently, Marifio et al. (2005b; 2006) suggested agr@sting joint probability model based
on bilingual phrase units, so-callégples Their proposal presents the particularity that transteti
modeling is addressed as a bilingual language modelinggaroldn this manner, their models can
take full advantage of standard back-nfigram smoothing techniques applied in regular language
modeling.

4.2.2 The Log-linear Scheme

The phrase-based approach was extended by Och and Ney @9@2)to allow for considering
additional arbitraryfeature functiongurther than the language and translation probability nsde
Formally:

M
¢ ~ argmax {log P(e|f)} ~ argmax { Z Ambon (f, e)} (4.3)

m=1

The weight §,,,) of each feature functiorhg,) is adjusted through discriminative training based
on the maximum entropy principle (Berger et al., 1996). Heevethe application of this approach is
limited by the feasibility of computing feature functionsrohg the search. In other words, complex
feature functions which may not be efficiently handled by deeoder are impractical. For that
reason, today, feature functions are typically limitedlteraative language and translation models,
as well as brevity penalty functions, and lexical weighsing

A crucial aspect of this approach is the adjustment of pararsieThe default optimization cri-
terion is intended to minimize the number of wrong decisiovsr the training data. However, Och
(2003) argued that there is a mismatch between this critenml MT quality evaluation measures.
He suggested an alternative optimization strategy in wthelse parameters are adjusted so as to
minimize the translation error rate of the system, as mealsly an automatic evaluation metric at
choice, typically BLEU.

4.2.3 Other Extensions

A major shortcoming of standard phrase-based SMT moddisiighiey do not make use of explicit
linguistic knowledge. Sentences are treated as sequeheesds, and words are treated as atomic
units. In order to overcome this limitation, several extens to standard phrase-based models have
been proposed. Below, we briefly describe some of the mostaet, without entering yet into
syntax-basednodels, which will be described in Section 4.3.
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Word Classes. Och and Ney (2000) revised and improved the parameter dgimat word align-
ment models proposed by Brown et al. (1993) through the paation of word classes
automatically trained from parallel corpora. These woeasses grouped together words that
are realized in similar contexts, and could be thought apime way, as unsupervised parts-
of-speech.

Reranking of N-best lists. Following the ideas by Collins et al. (2000; 2005) for thearging

of syntactic parse trees, Och et al. (2003) defineerankingapproach to SMT. Instead of

producing a single best translation, their system geneeageries of best candidates which

are then reranked according to a collection of linguistatdees (Shen et al., 2004). The top
ranked translation is selected as the system output. Theadsantage of this method is that
it allows for introducing a number of global sentence feagufe.g., about overall sentence
grammaticality or semantic structure) without increasitegoding complexity, although at

the cost of possibly discarding valid translations when jpiting the n-best list.

Och et al. (2003; 2004) suggested a smorgasbord of more th@rsyhtactically moti-
vated different feature functions for the reranking of 1-®@Gt lists of candidates applied to
Chinese-to-English translation. However, only a modeiragovement, in terms of BLEU
score, was reported (see Section 2.2.3). They arguedrlgatdtic processors introduce many
errors and that BLEU is not specially sensitive to the gratimabty of MT output.

Reranking techniques have been also successfully appligithiér NLP tasks such as Seman-
tic Role Labeling (Toutanova et al., 2005; Haghighi et 2002, Toutanova et al., 2008).

Dedicated Local Reordering. Tillmann and Zhang (2005) suggested using discriminatioelels
based on maximum entropy to model word reordering. Theiretsodllowed for restricted
local block swapping.

Translation Based on Shallow Parsing.Several approaches to exploiting morphological and shal-
low syntactic information for the estimation of phrasedshsranslation models have been
suggested. For instance, Koehn and Knight (2002) propasateir ChunkMTsystem, to
integrate morphosyntactic analysis (part-of-speech)tagd shallow parsing (base phrase
chunks). They obtained promising results. However, thdiegdmlity of their work was
limited to very short sentences. They later abandoned gipsoach and focused on the par-
ticular case of noun phrase translation. They developedapaodeling and features which
integrated into a phrase-based SMT system (Koehn, 2003b).

Schafer and Yarowsky (2003) suggested a combination of lmbdsed on shallow syntactic
analysis (part-of-speech tagging, lemmatization and phasase chunking). They followed
a back-off strategy in the application of their models. Oiog was based ofinite state
automata Although no significant improvement in MT quality was rejgal, results were
promising taking into account the short time spent in theetiggment of the linguistic tools.

Koehn et al. (2003) published a very interesting negatigaltein the view of later research.
They found that limiting the phrases in a standard phrasedaranslation model only to
those syntactically motivated severely harmed the systnfiopnance.
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In Chapter 5, we present an approach based on shallow pavkich allows to softly inte-
grate translation models based on richer linguistic infation with phrase-based models at
the lexical level. We show that it is possible to robustly come translation models based on
different kinds of information, yielding a moderate impeowent according to several stan-
dard automatic MT evaluation metrics. We also show that thedity loss noted by Koehn
et al. (2003) when limiting to a set of syntactically motedtphrases is mainly related to a
drop in recall.

Factored Models. These models are an extension of phrase-based translatidalsrwhich, in-
stead of simple words, allow for using a factored represiemtai.e., a feature vector for each
word derived from a variety of information sources (Koehrakt 2006; Koehn & Hoang,
2007). These features may be the surface form, lemma, sttmfespeech tag, morpholog-
ical information, syntactic, semantic or automaticallyided categories, etc. This represen-
tation is then used to construct statistical translatiomle®that can be combined together to
maximize translation quality. An implementation of fa@drMT models is available inside
the Moses SMT toolkit.

The work described in Chapter 5 can be also reframed as éach.

4.3 Syntax-based Translation

Another limitation of standard phrase-based systems ig¢loadering models are very simple. For
instance, non-contiguous phrases are not allowed, lortgndis dependencies are not modeled,
and syntactic transformations are not captured. Syntagéhapproaches seek to remedy these
deficiencies by explicitly taking into account syntacticolwiedge. Approaches tsyntax-based
MT differ in several aspects: (i) side of parsing (source,dtrgr both sides), (ii) type of parsing
(dependencies vs. constituents), (iii) modeling of prdligds (generative vs. discriminative), (iv)
core (structured predictions vs. transformation rulesll &) type of decoding (standard phrase-
based, modeled by transducers, based on parsing, grapti}bd@elow, we list some of the most
relevant approaches. We group them in three different fasnil

Bilingual Parsing. The translation process is approached as a case of syncisrbilimgual pars-
ing. Derivation rules are automatically learned from patatorpora, either annotated or
unannotated (Wu, 1997; Wu, 2000; Alshawi, 1996; Alshawilgt2000; Melamed, 2004;
Melamed et al., 2005; Chiang, 2005; Chiang, 2007). Belowjviefly describe some se-
lected works in this family:

e Wu (1997; 2000) presented a stochastiersion transduction grammdormalism for
bilingual language modeling of sentence pairs. They intced the concept diilingual
parsingand applied it, among other tasks, to phrasal alignment.

e Dependency translation models by Alshawi (1996; 2000k tas finite state transduc-
ers may be seen as well as a case of bilingual parsing.

e Melamed (2004) and Melamed et al. (2005) suggested appngabiT as synchronous
parsing, based on multitext grammars, in which the inputitare fewer dimensions
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than the grammar. However, their approach requires théabildy of annotated multi-
treebank$ which are very expensive to build.

e Chiang (2005; 2007) proposed a phrase-based model thahigsaschical phrases, i.e.,
phrases that contain subphrases. Their model is formadlynahronous context-free
grammarbut is learned from a bitext without any syntactic inforroati

Tree-to-String, String-to-Tree and Tree-to-Tree Models. These models exploit syntactic anno-
tation, either in the source or target language or both, imate more informed translation
and reordering models or translation rules (Yamada & Knig01; Yamada, 2002; Gildea,
2003; Lin, 2004; Quirk et al., 2005; Cowan et al., 2006; Gak¢ al., 2006; Marcu et al.,
2006). Below, we describe a selection of the most relevanksvo

e Yamada and Knight (2001; 2002) presented a syntax basedotsteng probability
model which transforms a source language parse tree intget tstring by applying
stochastic operations at each node. Decoding is approdolieding a CYK-alike
parsing algorithm. However, they did not obtain any improeet in terms of BLEU.

Some time later, in a joint effort with Eugene Charniak, thegsented a syntax-based
language model based upon the language model describedhamni@k, 2001), which
combined with their syntax based translation model, aguev notable improvement
in terms of grammaticality (Charniak et al., 2003). This no@ment was measured
following a process of manual evaluation. Interestinghe BLEU metric was unable
to reflect it.

e Gildea (2003) presented a study on tree-to-tree translatiodels. In spite of their
degree of sophistication these models did not achievefgignt improvements on stan-
dard evaluation metrics. Gildea (2004) tried also workirith\dependency trees instead
of constituents. They found constituent trees to perforttebe

Later, Zhang and Gildea (2004) made a direct comparisondetwyntactically super-
vised and unsupervised syntax-based alignment modelscifisply, they compared

the unsupervised model by Wu (1997) to the supervised mgd¥amada and Knight

(2001). They concluded that automatically derived tressilted in better agreement
with human-annotated word-level alignments for unseends.

e Cowan et al. (2006) presented a discriminative model f@-toetree translation based
on the concept oéligned extended projectiofAEP). AEPs are structures that contain
information about the main verb of a clause and its argumexgswell as the rela-
tionship between source-language arguments and targgpidge arguments (i.e., their
alignment to one another). These structures allow for sgltianslation problems such
as missing or misplaced verbs, subjects, and objects. Tuggested a number of fea-
tures for the case of German-to-English translation, ard ttse perceptron algorithm to
learn their weights. They reported a performance in the samge of standard phrase-
based approaches (Koehn et al., 2003). Similar proposeaésheen suggested by other
authors (Chang & Toutanova, 2007).

4A multitreebank is basically a multilingual parsed paratierpus in which constituents are aligned.
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e Lin (2004) proposed a path-based transfer model using depey trees. They sug-
gested a training algorithm that extracts a set of rulestthasform a path in the source
dependency tree into a fragment in the target dependeney Becoding was formu-
lated as a graph-theoretic problem of finding the minimunh matvering the source
dependency tree. Results were under the performance ofyntacsically motivated
phrase-based models.

e Quirk et al. (2005) suggested a tree-based ordering modeldban dependency pars-
ing of the source side. They introduced the concept of trtedédined as an arbitrary
connected subgraph in a dependency tree. Their model haattieularity of allowing
for reordering of discontinuous structures. Significanpiavements were reported on
small-scale domain-specific test sets.

e Galley et al. (2004; 2006) suggested approaching traoslas the application of
syntactically informed transformation rules. They usesl fitamework by Graehl and
Knight (2004; 2005) based on finite state tree-to-tree agwltin-string transducers. Re-
sults presented are promising.

e Marcu et al. (2006) presented a syntactified target langtragslation model. Phrases
were decorated with syntactic constituent informationeilimodels also relied on the
extended tree-to-string transducers introduced by GreaahKnight (2004; 2005). Sig-
nificant improvements on a large-scale open-domain traosléask were reported ac-
cording to both automatic and manual evaluation.

Source Reordering. Another interesting approach consists in reordering thecsotext prior to
translation using syntactic information so it shapes toahpropriate word ordering of the
target language (Collins et al., 2005; Crego et al., 200&tal., 2007). Significant improve-
ments have been reported using this technique.

As it can be seen, many efforts are being devoted to the ecmtisin of syntactically informed
SMT systems. Indeed, syntax-based models have becameothteart among SMT systems,
proving slightly more effective than top-quality phrasesbkd systems when applied to distant lan-
guage pairs such as Chinese-to-English which present tangatifferences in word ordering.

4.4 Dedicated Word Selection

Another major limitation of the standard phrase-based @y is that word (or phrase) selection
is poorly modeled. In particular, the source sentence gbitewhich phrases occur is ignored.
Thus, all the occurrences of the same source phrase ar@edsigo matter what the context is,
the same set of translation probabilities. For instance,ptirasebrilliant play’ in the text seg-
ment“A brilliant play written by William Locke”would receive the same translation probabilities
when appearing in the segmet brilliant play by Ronaldinho that produced a wonderful @b .
Thus, phrase selection takes place, during decoding, hetbnly further assistance of the language
model, which involves knowledge only about the target cxntBesides, in most cases translation
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probabilities are estimated on the basis of relative fraquecounts, i.e., Maximum Likelihood
Estimates (MLE).

For these reasons, recently, there is a growing interebeiapplication of discriminative learn-
ing to word selection (Bangalore et al., 2007; Carpuat & Wi)7b; Giménez & Marquez, 2007a;
Stroppa et al., 2007; Vickrey et al., 2005). Discriminativedels allow for taking into account a
richer feature context, and probability estimates are mdoemed than simple frequency counts.

Interest in discriminative word selection has also beenvatad by recent results in Word Sense
Disambiguation (WSD). The reason is that SMT systems parfon implicit kind of WSD, except
that instead of working with word senses, SMT systems opeatiagctly on their potential transla-
tions. Indeed, recent semantic evaluation campaigns heat word selection as a separate task,
under the name ahultilingual lexical sampléChklovski et al., 2004; Jin et al., 2007). Therefore,
the same discriminative approaches which have been sfiagbespplied to WSD, should be also
applicable to SMT. In that spirit, instead of relying on ML&r fthe construction of the translation
models, approaches to discriminative word selection sstdgélding dedicated translation models
which are able to take into account a wider feature contexdxidal selection is addressed as a
classification task. For each possible source word (or phiascording to a given bilingual lexical
inventory (e.g., the translation model), a distinct clfssiis trained to predict lexical correspon-
dences based on local context. Thus, during decoding, Enyelistinct instance of every source
phrase a distinct context-aware translation probabiligyrithution is potentially available.

Brown et al. (1991a; 1991b) were the first to suggest usingcdtl WSD models in SMT. In a
pilot experiment, they integrated a WSD system based onahiurtformation into their French-to-
English word-based SMT system. Results were limited to #ee ©f binary disambiguation, i.e.,
deciding between only two possible translation candidedad to a reduced set of very common
words. A significantly improved translation quality was ogjed according to a process of manual
evaluation. However, apparently, they abandoned thisdfmesearch.

Some years passed until these ideas were recovered by Cangll/u (2005b), who suggested
integrating WSD predictions into a phrase-based SMT systara first approach, they did so in a
hard manner, either for decoding, by constraining the set of gtete word translation candidates,
or for post-processing the SMT system output, by directhtaeing the translation of each selected
word with the WSD system prediction. However, they did nohage to improve MT quality.
They encountered several problems inherent to the SMTtanttre. In particular, they described
what they called théanguage model effedh SMT: “The lexical choices are made in a way that
heavily prefers phrasal cohesion in the output target ssrgeas scored by the language model”
This problem is a direct consequence of the hard interatiween their WSD and SMT systems.
WSD predictions cannot adapt to the surrounding targetesbntn a later work, Carpuat and Wu
(2005a) analyzed the converse question, i.e., they mehthadVSD performance of SMT systems.
They showed that dedicated WSD models significantly outperthe WSD ability of current state-
of-the-art SMT models. Consequently, SMT should benefinfl@SD predictions.

Simultaneously, Vickrey et al. (2005) studied the appiaraif context-awarediscriminative
word selection models based on WSD to SMT. Similarly to Bratral. (1991b), they worked
with translation candidates instead of word senses, altidiueir models were based on maximum
entropy and dealt with a larger set of source words and hilglvets of ambiguity. However, they
did not approach the full translation task but limited to ttenk-filling task, a simplified version of
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the translation task, in which the target context surroogdhe word translation is available. They
did not encounter the language model effect because: (tptiget context was fixed a priori, and
(ii) they approached the task in a soft way, i.e., allowing WM3ased probabilities to interact with
other models during decoding.

Following similar approaches to that of Vickrey et al. (2D05abezas and Resnik (2005) and
Carpuat et al. (2006) used WSD-based models in the contekiedull translation task to aid a
phrase-based SMT system. They reported a small improvemésrms of BLEU score, possibly
because they did not work with phrases but limited to singbeds. Besides, they did not allow
WSD-based predictions to interact with other translatiovbpbilities.

More recently, other of authors, including ourselves, hextended these works by moving
from words to phrases and allowing discriminative modelsdoperate with other phrase transla-
tion models as an additional feature. Moderate improvesieate been reported (Bangalore et al.,
2007; Carpuat & Wu, 2007b; Carpuat & Wu, 2007a; Giménez &diiaz, 2007a; Giménez &
Marquez, 2009a; Stroppa et al., 2007; Venkatapathy & Blanga2007). All these works were be-
ing elaborated at the same time, and were presented in varglates with very similar conclusions.
We further discuss the differences between them in Chapter 6

Other integration strategies have been tried. For insiaBpecia et al. (2008) used dedicated
predictions for the reranking of-best translations. Their models were based on InductivgcLo
Programming (ILP) techniques (Specia et al., 2007). Thmjtdid to a small set of words from
different grammatical categories. A very significant BLEljprovement was reported.

In a different approach, Chan et al. (2007) used a WSD sysigmotide additional features for
the hierarchical phrase-based SMT system based on bilipausing developed by Chiang (2005;
2007). These features were intended to give a bigger weigthie application of rules that are
consistent with WSD predictions. A moderate but signifidbEU improvement was reported.

Finally, Sanchez-Martinez et al. (2007) integrated apginiexical selector, based on source
lemma co-occurrences in a very local scope, into their lytorpus-based/rule-based MT system.

Overall, apart from showing that this is a very active reskedopic, most of the works listed in
this section evince that dedicated word selection modaghntie useful for the purpose of MT. Our
approach to discriminative phrase selection will be deelglycribed in Chapter 6. Further details
on the comparison among other approaches and ours will belsisussed in Section 6.4.

4.5 Domain Dependence

One of the main criticisms against empirical methods in N&Fheir strong domain dependence.
Since parameters are estimated from a corpus belongingpeciis domain, the performance of

the system on a different domain is often much worse. This @iestatistical and machine learning

approaches is well known and has been largely describeccémtrditerature for a variety of tasks

such as parsing (Sekine, 1997), word sense disambigudiszudero et al., 2000), and semantic
role labeling (He & Gildea, 2006).

In the case of SMT, domain dependence has very negativateffetranslation quality. For
instance, in the 2007 edition of the ACL MT workshop (WMTO&, extensive comparative study
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between in-domain and out-of-domain performance of MTesyistbuilt for several European lan-
guages was conducted (Callison-Burch et al., 2007). Reshlbwed a significant drop in MT
quality consistently according to a number of automatiduatioon metrics for all statistical sys-
tems. In contrast, the decrease reported in the case obagked or hybrid MT systems was less
significant or inexistent. Even, in some cases their ouarfiain performance was higher than
in-domain. The reason is that, while these systems are biti#thon the assumption of an open or
general domain, SMT systems are heavily specialized orrdivértg corpora. A change in domain
implies a significant shift in the sublanguage (i.e., lekad®ice and lexical order) employed, and,
consequently, statistical models suffer a significant laatk of recall —due to unseen events— and
precision —because event probability distributions difigbstantially. Notice that we intentionally
talk abouteventsnstead of words or phrases. In this manner, we have intettdethphasize that
the decrease is not only due to unknown vocabulary, but alsther types of linguistic phenomena,
such as syntactic or semantic structures, either unseearenris different contexts. In other words,
domain dependence is not only a problem related to lexidatsen, but also to other aspects such
as syntactic ordering and semantic interpretations.

Domain adaptability is, thus, a need for empirical MT sysermterest in domain adaptation
lies in the fact that while there are large amounts of datetrelrically available (e.g., in the web),
most often, these belong to a specific domain which is notyavtiae target application domain.
Typically, none or very few in-domain data are availabler #at reason, domain adaptation is a
very active research topic. For instance, the special ehgdl of the WMTO07 shared-task was on
domain adaptation. Several interesting approaches wggested (Civera & Juan, 2007; Koehn &
Schroeder, 2007).

Other authors have looked at the same problem the other waynér For instance, Vogel and
Tribble (2002) studied whether an speech-to-speech SMe&mspsuilt on a small in-domain parallel
corpus could be improved by adding out-of-domain knowlestggrces.

In Chapter 7, we discuss the problem of domain dependente icontext of SMT and present
several techniques which can be applied so as to mitigategative effects.
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Chapter 5

Shallow Syntactic Alignments and
Translation Models

As we have seen in Sections 4.2 and 4.3, in the last yearg ithargrowing interest in the incor-
poration of linguistic knowledge into SMT systems. For amate, the use of syntactic information
has lead to notable improvements, particularly in terms ofdaordering, e.g., approaches based
on bilingual parsing (Chiang, 2005), source reorderinglli@oet al., 2005; Li et al., 2007), and
syntactified target language models (Charniak et al., 2B@8hhoff & Yang, 2005; Marcu et al.,
2006). However, dedicated reordering models (Quirk et28l05; Cowan et al., 2006; Chang &
Toutanova, 2007), syntax-based translation models (Yar&agnight, 2001; Gildea, 2003), or ap-
proaches based on using syntactic information for the kamgrof n-best translations (Och et al.
2003; 2004), have only reported moderate improvements. o&silple reasons for these results
researchers have argued that (i) current metrics, such &JBhre not able to capture syntactic
improvements, and that (ii) linguistic processors, ofteined on out-of-domain data, introduce
many errors. In addition, we argue that a third possible €&udata sparsity. While the translation
between two languages may involve a wide range of possibkastjc movements, their observation
in training data is often very sparse, thus leading to pocarpater estimations.

In this chapter, we present a simple approach for the incatipm of linguistic knowledge
into translation models. Instead of modeling syntactiaadeang, we suggest exploiting shallow
syntactic information for the purpose of lexical selecti@ur approach is similar to the so-called
factored machine translation modeigich have emerged very recently (Koehn et al., 2006; Koehn
et al.,, 2007; Koehn & Hoang, 2007). First, we redefine thesledion unit so it may contain
additional linguistic information beyond the lexical lév&hen, following the standard approach,
we build word alignments over these enriched translatidts amd perform phrase extraction over
these alignments. Resulting translation models, basedffemeit types of information, are then
suitable for being combined as additional features in tlgeliteear scheme (Och & Ney, 2002),
yielding a significantly improved translation quality.

The rest of the chapter is organized as follows. First, irtiSe&.1, we describe the construction
of a phrase-based baseline system. Then, in Section 5.2yevéhg details of our proposal. Exper-
imental results are presented in Section 5.2.2. Main ceias are summarized in Section5.3.
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Figure 5.1: Architecture of the baseline phrase-based SpiEm

5.1 Building a Baseline System

Our baseline system implements a standard phrase-baseca&Mitecture (see Figure 5.1). This
involves, as seen in Section 4.1, three main componentdraislation model(s), (i) language
model(s), and (iii) the decoder.

For translation modeling, we follow the approach by Koehalet2003) in which phrase pairs
are automatically induced from word alignments. These aremted using th&IZA++ SMT
Toolkitin its default configuration, i.e., 5 iterations for IBM mdde 4 iterations for IBM model 3, 3
iterations for IBM model 4, and 5 iterations for HMM model (©& Ney, 2003}. Phrase extraction
is performed following th@hrase-extracalgorithm described by Och (2002). This algorithm takes
as input a word aligned parallel corpus and returns, for saakence, a set of phrase pairs that are
consistentvith word alignments. A phrase pair is said to be consistettt tive word alignment if all
the words within the source phrase are only aligned to woittémthe target phrase, and vice versa.
We work with the union of source-to-target and target-torse word alignments, with no heuristic
refinement. Only phrases up to length five are considered, plsrase pairs appearing only once
are discarded, and phrase pairs in which the source/talgas@ is more than three times longer
than the target/source phrase are ignored. Phrase pagsasz on the basis of relative frequency
(i.e., Maximum Likelihood Estimates). Formally, Igb; be a phrase in the source languagé (
andph. a phrase in the target languagsg, (we define a functiorount(ph, ph.) which counts
the number of times the phragé; has been seen aligned to phrase in the training data. The

http://www.fioch.com/GIZA++.html
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conditional probability thaph  maps intoph, is estimated as:

count(ph;. phe)

(5.1)
Ephf count(phy, phe)

P(phy|phe) =

For language modeling, we use BRI Language Modeling Toolki(SRILM) (Stolcke, 2002).
SRILM supports creation and evaluation of a variety of laaggi model types based on N-gram
statistics, as well as several related tasks, such adisttagging and manipulation of N-best lists
and word lattices. We build trigram language models apglyiimear interpolation and Kneser-Ney
discounting for smoothing.

Regarding theargmax’ search, we use thBPharaol¥ beam search decoder (Koehn, 2004a),
which naturally fits with the previous tool®haraohis an implementation of an efficient dynamic
programming stack-based search algorithm with latticeegtion and XML markup for external
components. In order to speed up the translation proces$awe fixed several of the decoder
parameters. In particular, we have limited the number oflickte translations to 30, the maximum
beam size (i.e., stack size) to 300, and used a beam threshiid > for pruning the search space.
We have also set a distortion limit of 6 positions.

We extend the baseline by combining generative and discatine translation models; (el f)
and P(f|e), following the log-linear formulation suggested by Och ately (2002). See Section
4.2.2. We have used the Pharaoh’s default heuristic distomiodel and word penalty feature.

Let us also note that, keeping with usual practice, prioruidding translation and language
models, the parallel corpus is case lowered. However, ®iptirpose of evaluation, word case is
automatically recovered using tMosespackage (Koehn et al. 2006; 2007). We did not use Moses
for decoding because most of the experimental work is pusvio its public release.

5.1.1 Data Sets

We have constructed our system using ‘teroParl’ parallel corpus oEuropean Parliament Pro-
ceedinggKoehn, 20034). Specifically, we have used the Europarl release from thenl@pe2006
Initiative® promoted by the TC-STAR Consorti¢émThis test suite is entirely based on European
Parliament Proceedings covering April 1996 to May 2005.

We have focused on the Spanish-to-English translation tagkire 5.2 shows a short fragment
extracted from the Spanish-English EuroParl parallel esrf he training set consists of 1,272,046
parallel sentences. Besides, for evaluation purposes @ om a separate set of 1,008 sentences.
Three human references per sentence are available. Wedralemly split this set in two halves,
which are respectively used for development and test. A htimerical description of the data sets
is available in Table 5.1. We show the number of sentencesvandss after tokenization. As to the
vocabulary size, we give the number of distinct words aféexedowering.

2http://www.speech.sri.com/projects/sriim/download.h tml .
3http://www.isi.edu/licensed-sw/pharaoh/

*http://www.statmt.org/europarl/

Shttp://tc-star.itc.it/openlab2006/

Shttp://www.tc-star.org/
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[English]

1. President .

2. - | declare resumed the session of the European Parliament adjourned
on Thursday , 28 March 1996 .

3. President .

4. - Ladies and gentlemen , on behalf of the House let me welcom e a
delegation from the Grand Committee of the Finnish Parliame nt , i.e.
, the European Affairs Committee of the Finnish Parliament |, led
by its chairman , Mr Erkki Tuomioja . | bid you a warm welcome !

5. ( Applause )

6. We are pleased at this visit , which reflects the increasin gly close
cooperation between us and the national parliaments in the U nion
and | wish our Finnish colleagues a pleasant stay in Strasbou rg and
, of course , useful and interesting discussions in this Hous e !

7. President .

8. - The Minutes of the sitting of Thursday , 28 March 1996 have been
distributed .

9. Are there any comments ?

[Spanish]

1. El Presidente .

2. - Declaro reanudado el per iodo de sesiones del Parlamento Europeo
, interrumpido el 28 de marzo de 1996 .

3. El Presidente .

4. - Deseo dar la bienvenida a los miembros de una delegaci on de
la “ Gran Comisi on “ , es decir , la Comisi on de Asuntos
Europeos , del Parlamento finland es , dirigida por su Presidente
, el Sr. Erkki Tuomioja , delegaci on que acaba de llegar a la
tribuna de invitados .

5. ( Aplausos )

6. Nos alegramos de esta visita , que se enmarca en la cooperac i on cada
vez mas estrecha entre nosotros y los Parlamentos nacionales de | a
Uni on . Deseo que nuestros colegas finlandeses tengan una agrad able
estancia en Estrasburgo y tambi en , naturalmente , que tengamos
ocasi on de hablar en esta Asamblea de manera provechosa e interesa nte .

7. El Presidente .

8. - El Acta de la sesi on del jueves 28 de marzo de 1996 ha sido
distribuida .

9. ¢ Hay alguna observaci on ?

Figure 5.2: A short fragment of the Spanish-English Europarallel corpus
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#distinct
Set  #sentences #tokens  tokens

Train 1,272,046 36,072,505 138,056
Spanish | Test 504 13,002 2,471
Dev 504 12,731 2,386

Train 1,272,046 34,590,575 94,604
English | Test 504 13,219 2,108
Dev 504 12,851 2,010

Table 5.1: Description of the Spanish-English corpus oblpaan Parliament Proceedings

5.1.2 Adjustment of Parameters

The adjustment of the parameters that control the conimibutf each log-linear feature during the
search is of critical importance in SMT systems. Most comiycaminimum error rate training
(MERT) strategy is followed (Och, 2003). A certain nhumbempafameter configurations are tried
for the translation of a held-out development data set. Atethd of the process, the configuration
yielding the highest score, according to a given automafduation measure at choice, typically
BLEU, is selected to translate the test set.

In our case, a greedy iterative optimization strategy il¥add. In the first iteration only two
valuesmin andmax, taken as preliminary minimum and maximum values, are foedach param-
eter. For translation, language, and distortion modelst ¥lues arg0.1, 1}. For word penalty,
values ar¢g{-3, 3}. In each following iterationp values in the interval centered at the top scoring
value from the previous iteration are explored at a resmlutif% the resolution of the previous
iteration. The resolution of the first iterationisax — min. The process is repeated until a maxi-
mum number of iterationg is reached. In our experiments we haverset 2 and/ = 5. In that
manner, the number of configurations visited, with possibfeetitions, is:2:*3 + (I — 1) % 3t+3,
wheret is the number of translation models utilized. Thti$,3 considers a single language model,
word penalty and distortion model. For instance, in the déefsetting, in which two translation
models are used (i.eR(e|f) and P(fl|e)), the optimization algorithm inspects 1,004 parameter
configurations 1004 = 2° + 4 x 3°).

Unless stated otherwise, system optimization is guidedieyBiL EU measure.

5.1.3 Performance

Prior to improving the baseline system, we analyze its parémce. Experimental results are
showed in Table 5.2. Based on the meta-evaluation resolts 8ection 3.2.2, we have selected
several metrics at the lexical level obtaining high levdlgarelation with human assessments at
the evaluation of the Spanish-to-English translation aiogaan Parliament Proceedings.

First, we study the impact of the symmetrization heuristissd during phrase extraction. Four
different methods are compared:
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METEOR | ROUGE | GTM
System (wnsyn) (w.1.2) | (e=2) | BLEU
0 0.7422| 0.4327]| 0.4158]| 0.6135
N 0.7380| 0.4291| 0.4106| 0.6010
Nn/u 0.7467| 0.4360| 0.4196| 0.6166
U 0.7528| 0.4370| 0.4217| 0.6217
‘ U+ ‘ 0.7512‘ 0.4375‘ 0.4230‘ 0.6234‘

[SYSTRAN] 0.7175] 0.3971] 0.3621] 0.4910]

Table 5.2: Baseline system. Automatic evaluation of MT itasu

® — no symmetrization (only source-to-target word alignmgnts

N — intersection of source-to-target an target-to-sourcedwadiignments.
e U — union of source-to-target an target-to-source word aligmis

e N/U — exploring the space between the intersection and the urdiao@ alignments, as
described by Och and Ney (2004).

It can be observed that, over this test bed, best resultdbtaimed when using the union of word
alignments, consistently according to all metrics, wittighs but significant advantage over explor-
ing the space between the union and the intersection. &tilegéy, working on the intersection is
worse than skipping symmetrization. Unless stated ottserygtatistical significance of evaluation
results is verified using the bootstrap resampling testriext by Koehn (2004b), applied over the
BLEU metric and based on 1,000 test samples.

Second, we study the influence of the phrase length. We cantpardefault setting, apply-
ing the union heuristic limited to length-5 phrases to airsgtin which phrases up to length 10
are allowed. It can be observedU§’ row) that incorporating longer phrases reports a minimal
improvement. Therefore, for the sake of efficiency, in the& of the chapter, we will use theJ*
system as our baseline, and will apply this same heuristicdrconstruction of all phrase tables.

As a complementary issue, we compare the baseline systergdneamal-purpose commercial
MT system, SYSTRAN, based on manually-defined lexical and syntactic transfiesr As ex-
pected, the performance of the out-of-domain rule-basetésyis significantly lower (see last row
in Table 5.2), specially in terms of BLEU. We have appliedrtiethodology for heterogeneous MT
evaluation described in Chapter 3 to further analyze theréifices between SYSTRAN and the
baseline system based on the heuristic (see Table 5.3). Interestingly, although afi¢al metrics
consider that the SMT system is significantly better than $R&N, according to several syn-
tactic and semantic metrics, the difference between batesys is much smaller (see highlighted
values). For instance, metrics based on head-word chaichingtover dependency relationships

"We use the on-line version 5.0 of SYSTRAN, availabléigg://www.systransoft.com/
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Level Metric SYSTRAN | SMT baseline
1-PER 0.7131 0.7657
1-TER 0.6408 0.6969
1-WER 0.6134 0.6750
BLEU 0.4910 0.6217
Lexical NIST 9.6494 11.0780
GTM (e = 2) 0.3621 0.4217
ROUGEy 0.3971 0.4370
METEORysyn 0.7175 0.7528
SP-NIST, 9.3279 9.9268
SP-NIST. 6.7231 6.9483
Syntactic | DP-HWC,,-4 0.2048 0.2612
DP-HWC -4 0.4825 0.4823
DP-HWC,.-4 0.4279 0.4270
CP-STM-5 0.5979 0.6358
SR-M,.-* 0.2126 0.2165
SR-O,-x 0.3470 0.3533
Semantic | SR-O, 0.5546 0.5564
DR-O,-% 0.4613 0.5355
DR-O,p-x 0.6248 0.6504
DR-STM-5 0.4759 0.5148

Table 5.3: Baseline system vs. SYSTRAN. Heterogeneous &aih

(small ‘DP-HWGC.-4’) and grammatical categories (small ‘DP-HW&) even assign SYSTRAN
a higher quality, although the difference is not significant

This fact reveals that in-domain statistical and out-ofrd@n rule-based systems operate on
different quality dimensions. Therefore, it reinforcee thelief that hybrid statistical/rule-based
approaches must be investigated. Moreover, this resulbloorates the need for heterogeneous
evaluation methodologies as the one proposed in Chapter 3.

5.2 Linguistic Data Views

Far from full syntactic complexity, we suggest to go backre simpler alignment methods first
described by Brown et al. (1993), but applied over redefmabgnment units beyond the shallow
level of lexical units. Our approach explores the possibdf using additional linguistic annotation
up to the level of shallow parsing. For that purpose, we thice the general concept laiguistic
data view(LDV), which is defined as any possible linguistic reprea@oh of the information con-
tained in a bitext. Data views are enriched with linguiséatfires, such as tipart-of-speech (PoS)
lemma andbase phrase chunk IOB label

Let us illustrate the applicability through an example.fe5.2 shows two sentence pairs, for
the case of Spanish-English translation, in which, the Bhghord form‘play’ is translated into
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A play written by William Locke

Una obra escrita por William Locke

must play more important role

///%/

Debemos jugar papel importante

Figure 5.3: Linguistic Data Views. A motivating example

Spanish asobra’ and‘jugar’, respectively. Conventional word alignment methods (Brawval.,
1993; Och & Ney, 2000), based on the EM algorithm, will updegguency counts fd(play, obra)’
and‘(play, jugar)’. However, in that manner, they are ignoring the fact thaseh®vo realizations
of the word form ‘play’ correspond indeed to different worttisit happen to be homographs. In
the first case,play’ is acting as a noun, and as the head of the noun phfaseilliant play’,
whereas in the second cdptay’ acts as a verb, and as the head of the verb phnaisst play’ In
the same way, phrase alignments will considdara’ and‘jugar’ as valid translations foplay’.
However, representing the two realizations of the wplaly’, for instance, aplayyy’ and'playy 5’
would allow us to distinguish between them. This would had&ect implication in the estimation
of translation probabilities, since, proceeding in thisnmer, they will be considered as distinct
events. This should lead, therefore, to more accurate waitcparase alignments. In addition, we
hypothesize that translation models built over these algmnts should yield an improved translation
quality.

The use of shallow syntactic information for translationdeling is, as we have seen in Section
4.2.3, not a new idea. For instance, Schafer and Yarowsl3Bj2Liggested combining lexical, PoS
and lemma translation models, following a back-off strate@ur approach is also very similar,
although previous, to the recently suggested factored madhanslation models (Koehn et al.,
2006; Koehn & Hoang, 2007). However, in our case, apart francking the alignment unit, we
also allow for redefining its scope, by working with alignrteeat two different levels of granularity,
lexical (i.e., words) and shallow syntactic (i.e., chunks)

5.2.1 Construction

Using linguistic data views requires data to be automayiGainotated for the two languages in-
volved. Thus, prior to case lowering, parallel segmentsaatematically PoS-tagged, lemmatized,
and base phrase chunked, using the SVMTool (Giménez & MEmg2004b), Freeling (Carreras
et al., 2004) and Phreco (Carreras et al., 2005) linguisticgssors, as described in Appendix B.1.
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Spanish English

Data View Train Dev  Test Train Dev  Test

W 138,056 2,471 2,386 94,604 2,103 2,010
L 103,112 1,839 1,753 84,189 1,767 1,661
WP 181,420 2,643 2,562 117,365 2,333 2,227
wC 239,680 2,972 2,911 175,142 2,754 2,668
WPC 275,428 3,085 3,012 201,368 2,882 2,785
Cw 1,125,605 3,168 3,0931,384,739 2,017 2,932

Table 5.4: Linguistic Data Views. Vocabulary sizes

Notice that it is not necessary that the two parallel coynatés of a bitext share the same data view,
as long as they share the same granularity.

In order to simplify the experiments, we have worked with Bedent LDV types: word (W),
lemma (L), word and PoS (WP), word and chunk label (WC), wé&alS and chunk label (WPC),
and chunk of words (Cw). By chunk label we refer to the OB I&tassociated to every word
inside a chunk, e.g.| s_nyp declare;_y» resumed_p thes_yp S€SSiOn_yp Ofz_pp thes_yp
European_yp Parliament_yr .o'. We build chunk tokens by explicitly connecting words ireth
same chunk, e.d(l) x» (declareresumed) » (the_sessiony» (of)»» (the.EuropeanParliament), »’.
Table 5.4 shows vocabulary sizes (i.e., number of distimkris) for each data view over training,
development and test sets, both for English and Spanishanlbe seen how vocabulary size in-
creases as more linguistic information is added. Only ircdse of replacing words for lemmas the
vocabulary size diminishes. An example of data view animias available in Table 5.5.

Following the process described in Section 5.1, first, wdédbwiord alignments on each of
these data views. Then phrase alignments are extractée\ristic) and scored on the basis of
relative frequency. We also build language models for eat&diew. Moreover, prior to evaluation,
automatic translations must be post-processed in ordemntove the additional linguistic annotation
and split chunks back into words. Finally, translations @eased so they can be compared to
reference translations.

5.2.2 Experimental Results

Table 5.6 presents evaluation results. For the sake of béddgave have limited to a representative
subset of source-target LDV combinations. The main obs$ervéas that no individual data view
improves over the ‘W-W’ baseline, except the ‘WPC-W’ datawiaccording to GTM. As a main
explanation for this result, we argue on the level of datasifyamotivated by the incorporation
of linguistic knowledge. Data sparsity may lead to biasedhpeeter estimations, thus, causing a
possible decrease in precision, but, in addition, therésis @n important decrease in recall, which
varies considerably among data views. We have measureldtiieisargument by observing the size
of phrase-based translation models built for each data,\aéer being filtered for the test set by
selecting only the source phrases applicable. For instaraseslation models built over word-based
data-views suffer a decrement in size, with respect to tHeldté view, sorted in increasing order, of

8 nside-Qutside-Regin.
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It would appear that a speech made at the weekend by Mr Fischle
indicates a change of his position .

Fischler pronunci6 un discurso este fin de semana en el gaeipa
haber cambiado de actitud .

It would appear that a speeafakeat the weekend by Mr Fischler
indicatea change of his position .

Fischlerpronunciar unadiscurso este fin de semana en el gaeecer
haber cambiade actitud .

Itrrp Wouldy,», appeay s that y apr speechy made zx atiy theyr
weekend y by;x Mryyp Fischler yr indicates sz apr change n
of ;v hispgpg poOSItionyy ..

WP
Fischlek, ,;y pronunci§ ,;; uny; discursq,c este, finye des, Semanac
ensr elpa quesr, parecia,; haber .y cambiade ,,» desp actitudye .-,

Itz np Woulds_vpr appeas v p thats spar 8z vp SPEECH xp Made; v p
ats_pp thes_np Weekend_ yp bys_pp Mrs_yp Fischler_ yp indicates,_y p
az_np Change yp Ofg pp hiSg np pOSItiOn _yp .0

wC
Fischler_y » pronunci®_y » UNs_yp diSCUrsQ_yp este;_np fin,_yp
des_pp SEMAN@_np €Ns_pp €l _spar QUE_spar Parecia_v » haber_ v p
cambiado_y » des_pp actituds_yp .o

Itiprp.5—np WOUlD p.5 v p) APPEAK 5.1 vr) thal v s spaRr RprB-NP)
speechn.;—np) Madey sn.5_vp Alrn.s-pp) the8pr.s_np WEEKENG v 1N p)
BYirn.5-pr) Ml nnp.s—np) FISChl€ly v p. - v py INDICALES, £2.5-v p) &pT.5-NP)
changeyvy.;—nr) Ofin.5-rpr) NiSPpRPs.5— NP POSIIONN N.1—Np) 0]

WPC
Fischlefy yn.5_vp) PrONUNCI®, a7 v e UNpr.snp) AISCUMSOye.r np)
esterp.s_np) fiNnc.r—np) 08sp.p—pp) SEMANRAc.5_Np) ENspis—PP)
€lpa.s—spar) QU8pro.r—spar PAIECIA .5y p) NADER AN 1 v
cambiad@, rp.;—vp) d8sp.5_pp) ACHUDNc.5_NP] -(Fpo)

(It) (would_appear) (that) (@peech) (made) (at) (theeekend) (by)
(Mr_Fischler) (indicates) (@hange) (of) (higosition) (.)

Cw
(Fischler) (pronunci6) (umliscurso) (estdin) (de) (semana) (en)
(el_gue) (parecisdhabercambiado) (de) (actitud) (.)

Table 5.5: Linguistic data views. An example
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Data View METEOR | ROUGE | GTM
Source Target| (wnsyn) (w1.2) | (e=2) | BLEU
\W \W 0.7528| 0.4370| 0.4217| 0.6217
WP WP 0.7444| 0.4304| 0.4180| 0.6172
wWC wWC 0.7420| 0.4290| 0.4134| 0.6090
WPC | WPC 0.7474| 0.4279]| 0.4167| 0.6008
W WPC 0.7477| 0.4350| 0.4203| 0.6185
WPC | W 0.7517| 0.4351] 0.4235]| 0.6157
L W 0.7356| 0.4231] 0.3960| 0.5732
L WPC 0.7328| 0.4200| 0.3963| 0.5708
W Cw 0.6621| 0.3838]| 0.3428| 0.4587
Cw w 0.5304| 0.2410/| 0.2800| 0.3327
Cw Cw 0.5401| 0.2518]| 0.2902| 0.3475

Table 5.6: Linguistic data views. Individual performanég (

Word Alignment | Phrase Alignment
Data View Data View METEOR | ROUGE | GTM

Source Target | Source Target (wnsyn) (w.1.2) | (e=2) | BLEU
W | W w | W 0.7528| 0.4370| 0.4217] 0.6217
WP WP WP WP 0.7444| 0.4304| 0.4180| 0.6172
WP WP W w 0.7556| 0.4390| 0.4279| 0.6230
WP WP W WP 0.7489| 0.4364| 0.4246| 0.6253
WP WP WP w 0.7505| 0.4350| 0.4212| 0.6187
wWC wWC wWC wC 0.7420| 0.4290| 0.4134| 0.6090
wWC wWC W w 0.7447| 0.4323| 0.4189| 0.6206
wWC wWC W wC 0.7491| 0.4344| 0.4168| 0.6116
wWC wWC wWC w 0.7518| 0.4334| 0.4247| 0.6151
WPC | WPC WPC | WPC 0.7474| 0.4279| 0.4167| 0.6008
WPC | WPC W w 0.7479| 0.4345| 0.4200| 0.6220
WPC | WPC W WPC 0.7487| 0.4326| 0.4179| 0.6105
WPC | WPC WPC | W 0.7491| 0.4323| 0.4204| 0.6143
Cw Cw Cw Cw 0.5401| 0.2518| 0.2902| 0.3475
Cw Cw W w 0.7173| 0.4120| 0.3902| 0.5524

Table 5.7: Linguistic data views. Individual performané&g (
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3% (‘W-WPC’), 6.5% (‘WP-WP’), 22% (‘WC-WC’), 25% (‘WPC-W’)and 26% (‘WPC-WPC’).
And, translation models for chunk-based data views, whithirathe lowest translation quality,
exhibit by large also the highest translation model sizeataent (75% for ‘Cw-W’ and 87.5% for
‘Cw-Cw’). Logically, the more information is added to a datiaw, specially to the source side,
the larger the recall decrement. The case of ‘L-W’ and ‘L-We@ta views is different, since
filtered translation models are indeed larger (25-30% sizeeiment). Thus, the drop in translation
quality for lemma-based data views may only be attributéble lack of precision. This result is
not surprising. After all, it only confirms the common intait that ignoring morphology in the
translation of rich morphological languages such as Shasisot a good idea.

In order to mitigate the effects of data sparsity we post@ss word alignments prior to phrase
extraction, removing linguistic information, so only leal units and alignment information remain.
Evaluation results are presented in Table 5.7. We diststighetween word-alignment data views
and phrase-alignment data views. It can be observed tmeidtaon quality improves substantially,
although only in the case of ‘WP-WP’ alignment data viewsr¢his a slight increase over the
baseline. With the intent to further improve these resulésstudy the possibility of combining
alignments from data views based on different linguistioimation. We consider two different
combination schemesocal andglobal phrase extraction.

Local Phrase Extraction (L-phex)

A separate phrase extraction process is performed for eaaftestarget LDV word alignment.
Resulting translation models are then combined as addltiog-linear features. Note that there
is a limitation in this approach. Although word alignmentayrbe based on different data views,
phrase alignments must all be based on the same sourcedatgeview.

Experimental results are showed in Table 5.8. Because qupagh to parameter adjustment
based on MERT does not scale well when the number of feataceeasey we have only op-
timized individual weights in the case of combining a maxmnaf five translation models. The
most positive result is that all pair combinations signifitha outperform the baseline system con-
sistently according to all metrics. In the case of combirtimg models, best results are obtained by
the ‘W+WPC’ combination, according to all metrics. LDV tidgis exhibit a similar performance,
although BLEU confers a significant advantage to the ‘W+WeE@*triplet, whereas METEOR
prefers the ‘W+WP+Cw’ one. Combining more than three modekss not report a further signifi-
cant improvement.

When more than five translation models are combined adg#tigir weights becomes imprac-
tical. Thus, we decided to study the case of setting the otispecontribution of translation models
uniform so that all models receive the same weight and weigliin up to one. The global contri-
bution of translation models is adjusted only with respedahguage, word penalty and distortion
models. Interestingly, using uniform weights leads alsartamproved translation quality, specially
in terms of BLEU and GTM. Best results are attained by the ‘WPWZwW' and ‘W+WPC+Cw’
triplets. However, when more than three features are cazdbimprovements are minimal. Indeed,
according to ROUGE and METEOR this option underperformsbeeline. Therefore, uniform

%For instance, when 3, 4 and 5 translation models are compthednumber of parameter configurations to visit
increases up to 2,980, 8,876 and 26,500, respectively.
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weighting is not a practical solution when the number of dezd in the log-linear combination
increases.

Global Phrase Extraction (G-phex)

A unique phrase extraction is performed over tinéon of word alignments corresponding to differ-
ent source-target data views, thus, resulting in a unicuestation model. The main advantage of
this alternative is that the complexity of the parameteirtgiprocess does not vary. Besides, phrase
alignments do not have to implement all the same sourcettdega view.

Experimental results on the combination of the 6 data vidast (ow in Table 5.8) show that
global phrase extraction outperforms the baseline systasistently according to all metrics. Their
performance is under the performance of L-phex. Howevéas,ahproach has the main advantage
of making the process of requiring a much lighter parameénozation process.

5.2.3 Heterogeneous Evaluation

We have applied the methodology for heterogeneous MT etiatudescribed in Chapter 3 to per-
form a contrastive error analysis between the baselinesyand the several LDV combinations
based on local and global phrase extraction. Prior to amejyindividual cases, Table 5.9 reports
on system-level evaluation. Several metric represemtixom each linguistic level have been se-
lected. Since we do not count on human assessments, metriesauated only in terms of their
ability to capture human likeness, using the KING measure.h@éve also computed to variants of
the QUEEN measure, namely QUEEX™) and QUEENXZFF). The first value corresponds to
the application of QUEEN to the optimal metric combinati@séd on lexical features onlx (- =

{ METEORy.syn }), Whereas the second value corresponds to QUEEN appli¢e toptimal met-
ric combination considering linguistic features at diéfiet levels &/, = { SP-NIST,, SP-NIST, }).
Interestingly, this set consists only of shallow-syntaatietrics. Optimal metric combinations have
been obtained following the procedure described in Se&iadrt.

The most important observation, is that the difference ialigubetween the baseline system
and combined data views is significantly and consistenflgected by metrics at all linguistic levels.
Only in the case of global phrase extraction there are a fesmions ROUGEy,’, ‘DP-O.-+", ‘SR-
O,-x,’ and‘'SR-0,;"). In all cases, the highest scores are attained by the Idwakp extraction
method, although there is no clear consensus on which ceidrinis best.

5.2.4 Error Analysis

We inspect particular cases at the sentence level. Fongestdable 5.10 presents a negative case
on the behavior of the global phrase extraction system. @édeow ‘todo dependeis wrongly
translated intdall a matter’ instead of‘everything depends’ This case also reveals that global
phrase extraction suffers also a slight decrease in reEall.instance, no translation is found for
‘asumirse’ whereas the baseline system successfully translateittaken’. The reason is that
the union of word alignments produces fewer phrase aligtsnén other words, as word links are
added to the alignment matrix it becomes more difficult to fhdase pairs consistent with word
alignment (see Section 5.1). Only phrase pairs supportealllijata views are extracted. Thus,
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METEOR | ROUGE | GTM

Data View (wnsyn) (w1.2) | (e=2) | BLEU
Baseline
W 0.7528| 0.4370| 0.4217] 0.6217

L-phex — Adjusted Contribution

W+Cw 0.7567| 0.4383| 0.4229| 0.6293
W+WP 0.7566| 0.4397| 0.4280| 0.6268
W+WC 0.7565| 0.4395| 0.4253| 0.6312
W+WPC 0.7594| 0.4409| 0.4310| 0.6350
WP+WC 0.7561| 0.4394| 0.4252| 0.6304
W+WP+WC 0.7540| 0.4400| 0.4259| 0.6349
W+WP+Cw 0.7609| 0.4402| 0.4273| 0.6316
W+WPC+Cw 0.7530| 0.4372] 0.4272| 0.6390
[ W+WP+WC+Cw | 0.7599] 0.4411] 04327 0.6367|
| W+WP+WC+WPC+Cw |  0.7581| 0.4400] 0.4284] 0.6354|
L-phex — Uniform Contribution
W+WP+WC 0.7529| 0.4369| 0.4261| 0.6324
W+WP+Cw 0.7543| 0.4361| 0.4237| 0.6291
W+WC+Cw 0.7561| 0.4380| 0.4274| 0.6372
W+WPC+Cw 0.7589| 0.4380| 0.4292| 0.6306
[ W+WP+WC+Cw | 0.7494] 0.4350] 0.4232] 0.6317|
| W+WP+WC+WPC+Cw |  0.7503| 0.4340] 0.4244] 0.6333|

G-phex — Adjusted Contribution
| W+L+WP+WC+WPC+Cw 0.7566| 0.4376] 4268 0.6316

Table 5.8: Linguistic data views. Local vs. global phrasgastion
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L-phex
W uniform W tuned tuned W+ | tuned W+ || G-phex
Metric KING baseline WC+Cw W+WPC WP+Cw | WPC+Cw

1-WER 0.1462| 0.6750| 0.6855| 0.6866| 0.6851| 0.6888| 0.6794
1-PER 0.1250| 0.7657| 0.7718| 0.7709| 0.7730| 0.7708| 0.7671
1-TER 0.1442| 0.6969| 0.7072| 0.7071| 0.7076| 0.7090| 0.7022
BLEU 0.1131| 0.6217| 0.6372| 0.6350| 0.6316| 0.6390| 0.6316
NIST 0.1435|| 11.0780| 11.2840| 11.2260| 11.2070| 11.2296| 11.2039
GTM (e =1) 0.1071| 0.8833| 0.8830| 0.8881| 0.8870| 0.8811| 0.8854
GTM (e = 2) 0.1336| 0.4217| 0.4274| 0.4310| 0.4273| 0.4272| 0.4268
o)} 0.0985| 0.7012| 0.7096| 0.7109| 0.7113| 0.7071| 0.7062
ROUGEw 0.1574| 0.4370|| 0.4380| 0.4409| 0.4402| 0.4372| 0.4376
METEOR exact | 0.1475| 0.7140| 0.7172| 0.7204| 0.7205| 0.7137| 0.7195
METEOR wnsyn | 0.1667| 0.7528| 0.7561| 0.7594| 0.7609| 0.7530| 0.7566
QUEEN(XT) 0.1667| 0.5647| 0.5705| 0.5773| 0.5810| 0.5558| 0.5692
SP-Op,-x 0.1157| 0.6799| 0.6878| 0.6880| 0.6894| 0.6848| 0.6827
SP-Oc-% 0.1157| 0.6824| 0.6910| 0.6916| 0.6915| 0.6870| 0.6849
SP-NIST; 0.1422| 11.1838| 11.3946| 11.3378| 11.3282| 11.3383| 11.2970
SP-NIST, 0.2097| 9.9268| 10.1114| 10.0305| 10.0350| 10.0900|| 10.0274
SP-NIST, 0.1779| 6.9483| 7.0498| 7.0018| 7.0043| 7.0494| 6.9125
SP-NIST;0p 0.1825| 7.5888| 7.6958| 7.6600| 7.6782| 7.6868| 7.5950
QUEEN(X} 1 0.2149| 0.3659| 0.3736| 0.3763| 0.3689| 0.3690| 0.3678
DP-O;-x 0.1409| 0.4975|| 0.5038| 0.5138| 0.5088| 0.5024| 0.5031
DP-O.-x 0.1587| 0.5993|| 0.6080| 0.6037| 0.6066| 0.6016| 0.6003
DP-O,-x 0.1700| 0.4637| 0.4735| 0.4667| 0.4705| 0.4685| 0.4665
DP-HWC -4 0.1078| 0.2612| 0.2683| 0.2806| 0.2772| 0.2696| 0.2671
DP-HWC_.-4 0.1766| 0.4823| 0.4967| 0.5008| 0.5006| 0.4916| 0.4936
DP-HWC,.-4 0.1687| 0.4270| 0.4428| 0.4439| 0.4429| 0.4326| 0.4385
CP-Op-* 0.1138| 0.6768| 0.6853| 0.6864| 0.6888| 0.6815| 0.6807
CP-O.-x 0.1111| 0.6481| 0.6585| 0.6606| 0.6597| 0.6553| 0.6560
CP-STM-4 0.1462| 0.6763| 0.6862| 0.6877| 0.6873| 0.6821| 0.6827
NE-M-x 0.0443| 0.5315| 0.5337| 0.5348| 0.5356| 0.5286| 0.5234
NE-Oc-x 0.0562| 0.5513| 0.5538| 0.5509| 0.5546| 0.5471| 0.5398
NE-Oe-xx 0.1151| 0.6842| 0.6933| 0.6921| 0.6946| 0.6889| 0.6880
SR-M,.-xp, 0.0926| 0.2165| 0.2242| 0.2252| 0.2290| 0.2194| 0.2192
SR-O,-xp 0.1071| 0.3533|| 0.3559| 0.3623| 0.3652| 0.3478| 0.3533
SR-O;p 0.1204| 0.5564| 0.5588| 0.5662| 0.5710| 0.5518| 0.5559
DR-O,-% 0.1382| 0.5355|| 0.5416| 0.5475| 0.5439| 0.5370| 0.5415
DR-O;.p-% 0.1508| 0.6504| 0.6585| 0.6611| 0.6546| 0.6498| 0.6545
DR-STM-4 0.1362| 0.5670| 0.5737| 0.5767| 0.5772| 0.5687| 0.5729

Table 5.9: Baseline system vs combined data views. Heteeages evaluation
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Source  Por supuesto , todo depende de lo que se haya calculado aud®cu”
deba asumirse .

Ref 1 It does , of course , depend on what is being estimated , andwn h
much is to be taken up .

Ref 2 Of course , everything depends on what has been calculatedrainow
much must be assumed .

Ref 3 Of course , everything depends on what se was calculatedrahdveo

much should be assumed .

Baseline Of course , everything depends on what has been calculatedfd&ow
much should be taken .

G-phex Of course all a matter of what has been calculated and of how much
shouldasumirse.

L-phex  Of course , everything depends on what has been calculatedfd&ow
much should be taken .

Table 5.10: Linguistic data views. G-phex method fails

Level Metric Baseline| G-phex
BLEU 0.7526 | 0.3381
GTM (e = 2) 0.6283 | 0.3562
Lexical ROUGEy 0.4442 | 0.2831
METEORysyn | 0.8354 | 0.5321
QUEEN 0.5556 | 0.0000
DP-HWC,-4 1.0000 | 0.0000
Syntactic | DP-O,.-x 0.7085 | 0.2512
CP-O.-* 0.6857 | 0.3537
CP-STM-9 0.8734 | 0.3173
SR-O,-* 0.3636 | 0.0789
SR-M,.-% 0.4444 | 0.2222
Semantic | SR-O, 0.5000 | 0.3226
DR-O,.-x 0.6419 | 0.1917
DR-O,,-x 1.0000 | 0.2431
DR-STM-4 0.8476 | 0.1783

Table 5.11: Linguistic data views. G-phex method fails €h@gjeneous evaluation of case from
Table 5.10)
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Source

Los miles de decisiones y leyes aprobadas por la Comisfarvez se
hacen en la propia Comision ; casi siempre las hacen loogg
trabajo en los que hay participantes de los que no sabemas nad

Ref 1

Ref 2

Ref 3

The thousands of decisions and laws adopted by the Commiaseararely
made in the Commission itself but , more often than not , inkinoy

groups involving participants of whom we have no knowledge .

The thousands of decisions and laws approved by the Conumiast seldom
taken by the Commission itself ; they are almost always tdketne

working groups that include participants about whom we knothing .

The thousands of decisions and laws approved by the Conamiase rarely
made in the actual Commission ; they are nearly always madegnyork
groups in which there are participants of whom we know n@f@bout .

Baseline

G-phex

L-phex

The thousands of decisions and laws passed by the Commrsse&in being
made in the Commission itself ; almost always the do the vimgrkiroups
where there participants from those who we know nothing .

The thousands of decisions and laagopted bythe Commission rarelgre
madein the Commission itself ; almost always theade bythe working
groupsin which there participants fromhichwe know nothing .

The thousands of decisions and laagopted bythe Commission rarelgre
madein the Commission itself ; almost always thekethe working groups
in which there is participants of thoseho we know nothing .

Table 5.12: Linguistic data views. LDV models help
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Level Metric Baseline| G-phex | L-phex
1-PER 0.6486 | 0.7297 | 0.6757

1-TER 0.6216 | 0.6486 | 0.6216

BLEU 0.4126 | 0.6162 | 0.5669

GTM (e =1) 0.7778 | 0.9315 | 0.8889

Lexical ROUGEy 0.3016 | 0.3443 | 0.3336
METEORyusyn | 0.6199 | 0.7114 | 0.6763

QUEEN 0.2222 | 0.5556 | 0.5556

SPO,-x 0.4792 | 0.5957 | 0.5417

SPO % 0.5102 | 0.5625 | 0.5417

SP-NIST, 9.0035 | 10.1480| 9.7283

SP-NIST, 6.4328 | 5.9954 | 5.8059

DP-O;-% 0.7005 | 0.7851 | 0.7725

DP-O.- 0.3464 | 0.5081 | 0.4933

Syntactic | DP-O,.-* 0.3866 | 0.5273 | 0.5240
DP-HWC,-4 0.4410 | 0.7647 | 0.7734

CP-O,-x 0.4800 | 0.6304 | 0.5745

CP-O.-* 0.4244 | 0.5848 | 0.5059
CP-STM-4 0.5223 | 0.6197 | 0.5920

SR-M,.-% 0.1250 | 0.2353 | 0.2500

SR-O,-* 0.4043 | 0.6327 | 0.4259

Semantic | SR-O, 0.6098 | 0.9512 | 0.5750
DR-O,-x; 0.2305 | 0.3055 | 0.2797
DR-O,p-*p 0.2800 | 0.3692 | 0.3385
DR-STM-4, 0.2722 | 0.3612 | 0.3267

Table 5.13: Linguistic data views. LDV models help (hetemgous evaluation of case from Table
5.12)
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phrase pairs occurring few times in the training data maylyedssappear from the translation
table. Summing up, global phrase extraction is a methochtaictowards precision. However, the
increase in precision of phrase alignments is attainedeatdtist of recall. In contrast, the local
phrase extraction technique exhibits a more robust behélighex’ corresponds to the output by
the ‘W+WPC+Cw’ system). Heterogeneous evaluation resutisshown in Table 5.11.

Table 5.12 shows a positive case in which the use of linguikita views leads to an improved
translation. For instancéaprobadas’is better translated inttadopted’ instead of'passed, ‘se
hacen’into ‘are made’instead ofbeing made, and‘en los que’into ‘in which’ instead ofwhere’.
Heterogeneous evaluation results, reported in Table SH@y that improvements take place in
several quality dimensions. Most metrics prefer the oulguthe ‘G-phex’ system, with a slight
advantage over the ‘L-phex’ system.

5.3 Conclusions of this Chapter

This chapter deals with the construction and developmera §panish-to-English phrase-based
SMT system trained on European Parliament Proceedings, Wie have analyzed its performance
as compared to an open-domain rule-based MT system. Ititeylgs while lexical metrics give

a significant advantage to the SMT system, several metrideeter linguistic levels confer both
systems a similar score.

In order to improve the baseline SMT system, we introducectimeept of linguistic data view.
Six different data views at the shallow-syntactic level édeen used to build alternative word
and phrase alignment models. The first observation is tlfitidtual translation models based on
enriched data views underperform the baseline system. réhidt is mainly attributable to data
sparsity, which leads to biased parameter estimationsjrggaa loss of precision and recall. Thus,
we have shown that data sparsity is a major cause for the faskooess in the incorporation of
linguistic knowledge to translation modeling in SMT.

As a solution, we study the possibility of combining tratisia models based on different data
views. We have presented and discussed the pros and cone dffferent combination schemes.
Interestingly, combined models yield a significantly imyed translation quality. This confirms
that they actually carry complementary kinds of informatadbout the translation process. Besides,
error analyses show that improvements take place at deepétygdimensions beyond the lexical
level.

We leave for further work the experimentation with new dagavws using deeper linguistic infor-
mation, such as full syntactic constituents, grammatieglethdencies, and semantic roles. We also
speculate that linguistic information could be used to cot@m@lternative translation probabilities
and also to prune translation tables according to linguisiieria and/or constraints.

Finally, across this chapter we have observed that systéimiagtion is a crucial and complex
issue. Specifically, we are concerned about its scalglalitgt about the effects of system overtuning.
These two problems require further study.
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Chapter 6

Discriminative Phrase Selection for SMT

As we have seen in Section 4.4, a major limitation of the steshghrase-based approach to SMT is
that lexical selection is poorly modeled. For instance sitigrce sentence context in which phrases
occur is completely ignored. Thus, all occurrences of tmeesphrase are assigned, no matter what
the context is, the same translation probabilities. Besithee estimation of translation probabilities
is often very simple. Typically, they are estimated on theidaf relative frequency (i.e., maximum
likelihood, see Section 4.2) (Koehn et al., 2003).

In order to overcome this limitation, this chapter expldtesapplication of discriminative learn-
ing to the problem of phrase selection in SMT. Instead ofinglyon MLE for the construction of
translation models, we suggest using local classifiers twhie able to take further advantage of
contextual information. We present experimental resuttshe application of DPT models to the
Spanish-to-English translation of European Parliameot&xdings.

The chapter is organized as follows. First, in Section 6ut approach to Discriminative Phrase
Translation (DPT) is fully described. Then, In Section @&or to considering the full translation
task, we measure the local accuracy of DPT classifiers asttetédohrase translatioriask. In this
task, the goal is not to translate the whole sentence butindlyidual phrases without having to
integrate their translations in the context of the targatesgce. We present a comparative study on
the performance of four different classification settingsdal on two different learning paradigms,
namely Support Vector Machines and Maximum Entropy models.

In Section 6.3, we tackle the full translation task. We haudt la state-of-the-art factored
phrase-based SMT system based on linguistic data views &l of shallow parsing as described
in Chapter 5. We compare the performance of DPT and MLE-biaadlation models built on the
same parallel corpus and phrase alignments. DPT prediciomintegrated into the SMT system
in a soft manner, by making them available to the decoder as an adalitiog-linear feature so
they can fully interact with other models (e.g., languagstadtion, word penalty and additional
translation models) during the search. We separately shelgffects of using DPT predictions for
all phrases as compared to focusing on a small set of verydregphrases.

This chapter has also served us to experience in first petfsmugh a practical case study, the
role of automatic evaluation metrics in the context of systievelopment. In particular, we have
studied the influence of the metric guiding the adjustmerthefinternal parameters of an SMT
system. We have applied the methodology for heterogenadamatic MT evaluation described in
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Chapter 3, which allows for separately analyzing qualityezs$s at different linguistic levels, e.g.,
lexical, syntactic, and semantic. As we have seen, thisadetbgy also offers a robust mechanism
to combine different similarity metrics into a single me&sof quality based ohuman likeness
We have complemented automatic evaluation results threugir analysis and by conducting a
number of manual evaluations. Main conclusions are sunzedin Section 6.5.

6.1 Discriminative Phrase Translation

Instead of relying on MLE estimation to score the phrasesfiit e;) in the translation table, DPT
models deal with the translation of every source phifases a multiclass classification problem, in
which every possible translation ¢f is a class. As an illustration, in Figure 6.1, we show a real

example of Spanish-to-English phrase translation, in vitie source phrasereo que”, in this
case translated dkbelieve that”, has several possible candidate translations.

SOURCE No obstante, creo que pronto podremos felicitarle por su exito politico

creo que
DA
4
in my it seems
opinion to me

my belief
TARGET However, | believe that before long we will be able to congratulate you on you political success.

is that
Figure 6.1: Discriminative phrase translation. An example

| believe
that

6.1.1 Problem Setting

Training examples are extracted from the same training alaia the case of conventional MLE-
based models, i.e., a phrase-aligned parallel corpus @et®6 6.3.1). We use each occurrence
of each source phragé to generate a positive training example for the class cporeding to the
actual translatiomr; of f; in the given sentence, according to the automatic phragemént. Let us
note that phrase translation is indeed a multilabel problgimce word alignments allow words both
in the source and the target sentence to remain unalignedrigere 4.1, in Section 4.2), the phrase
extraction algorithm employed allows each source phrase taligned with more than one target
phrase, and vice versa, with the particularity that all fmdsgphrase translations are embedded or
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overlap. However, since the final goal of DPT classifiers istagerform local classification but
to provide a larger system with more accurate translatiofatsilities, in our current approach no
special treatment of multilabel cases has been performed.

6.1.2 Learning

There exist a wide variety of learning algorithms which campplied to the multiclass classification
scenario defined. In this work we have focused on two famitiasnely Support Vector Machines,
SVM (Vapnik, 1995; Cristianini & Shawe-Taylor, 2000), andakmum Entropy, ME (Jaynes,

1957). Both methods have been widely and successfullyeghpdi WSD and other NLP problems
(Berger et al., 1996; Ratnaparkhi, 1998; Joachims, 19%8gMEz et al., 2006). We have tried four
different learning settings:

1. Linear Binary SVMs (SVMlinear)

N

. Degree-2 Polynomial Binary SVMs (SVMpoly2)
3. Linear Multiclass SVMs (SVMmc)

4. Multiclass ME models (MaxEnt)

In all cases, classifiers have been constructed using publ@ilable software. SVMs have
been learned using the SVt and SVM'““* packages by Thorsten Joachims (Joachims, £999)
ME models have been been learned using the MEGA package byn®#l (2004Y, and the
MaxEnt package, by Zhang EeMEGA follows the Limited Memory Broyden-Fletcher-Goldfa
Shanno (BFGS) optimization method for parameter estimatihereas MaxEnt additionally al-
lows for using the Generative Iterative Scaling (GIS) ojtettion method.

Binary vs. Multiclass Classification

While approaches 3 and 4 implement by definition a multictdassification scheme, approaches 1
and 2 are based on binary classifiers, and, therefore, thichas$ problem must be binarized. We
have appliedne-vs-allbinarization, i.e., a binary classifier is learned for eveogsible translation
candidate; in order to distinguish between examples of this class drttlefest. Each occurrence
of each source phrasg is used to generate a positive example for the actual classldsses)
corresponding to the aligned target phrase (or phrased)aamegative example for the classes
corresponding to the other possible translationg; ofAt classification time, given a source phrase
fi,» SVMs associated to each possible candidate translafiarf f; will be applied, and the most
confident candidate translation will be selected as thesghtranslation.

http://svmlight.joachims.org
2http://www.cs.utah.edu/ ~hal/megam/
3http://homepages.inf.ed.ac.uk/s0450736/maxent _toolkit.html
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Support Vector Machines vs. Maximum Entropy

The SVM and ME algorithms are based on different principl#ghile the SVM algorithm is a
linear separator which relies on margin maximization, arefinding the hyperplane which is more
distant to the closest positive and negative examples, Mipisbabilistic method aiming at finding
the least biased probability distribution that encodesageigiven information by maximizing its
entropy. An additional interest of comparing the behavio8¥M and ME classifiers is motivated
by the nature of the global MT system architecture. Whiledhizomes of ME classifiers are prob-
abilities which can be easily integrated into the SMT fraragiy SVM predictions are unbounded
real numbers. This issue will be further discussed in Sedia.2.

Linear vs Polynomial Kernels

Although SVMs allow for a great variety of kernel functioresd., polynomial, gaussian, sigmoid,
etc.), in this work, based on results published in recent VliteEtature (Lee & Ng, 2002; Marquez
et al., 2006), we have focused on linear and polynomial kemfedegree-2 (see Section 6.2). The
main advantage of using linear kernels, over other kermdyis that this allows for working in
the primal formulation of the SVM algorithm and, thus, togadvantage of the extreme sparsity of
example feature vectors. This is a key factor, in terms ofiefficy, since it permits to considerably
speed up both the training and classification processesgi@mé& Marquez, 2004a). The usage of
linear kernels requires, however, the definition of a ricktdiee set.

6.1.3 Feature Engineering

We have built a feature set which considers different kindaformation, always from the source
sentence. Each example has been encoded on the basislotdheontextof the phrase to be
disambiguated and thgdobal contextepresented by the whole source sentence.

As for the local context, we use-grams ¢ € {1,2,3}) of: word forms, parts-of-speech, lem-
mas, and base phrase chunking 10B labels, in a window of Sitotaethe left and to the right of the
phrase to disambiguate. We also exploit part-of-speechimigs and chunk information inside the
source phrase, because, in contrast to word forms, theseamagnd thus report very useful infor-
mation. Text has been automatically annotated using thenfivlg tools: SVMTool for PoS tagging
(Giménez & Marquez, 2004b), Freeling for lemmatizati@aireras et al., 2004), and Phreco for
base phrase chunking (Carreras et al., 2005), as descrilfgection B.1. These tools have been
trained on the WSJ Penn Treebank (Marcus et al., 1993), éocdlse of English, and on the 3LB
Treebank (Navarro et al., 2003) for Spanish, and, therefelg on their tag sets. However, for
the case of parts-of-speech, because tag sets take intonadéowe morphological distinctions, we
have additionally defined several coarser classes groumparghological variations of nouns, verbs,
adjectives, adverbs, pronouns, prepositions, conjumgtideterminers and punctuation marks.

As for the global context, we collect topical information bgnsidering content words (i.e.,
nouns, verbs, adjectives and adverbs) in the source senéena bag of lemmas. We distinguish
between lemmas at the left and right of the source phraseg lsambiguated.

As an illustration, Table 6.1 shows the feature represemntdbr the example depicted in Fig-
ure 6.1, corresponding to the translation of the phfas® que’ At the top, the source sentence
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Source Sentence

CreQc cersvmrB—ve] U8que:cs:B—consp) PrONQy ont0,40,0)
POAremMos . emos, vis,s—ve) feliCitar€yicisarie, v, 1 ve)
PONor 5P, 5-pp) SUsu,pp,B-NP] EXIO 0yt N 1-NP]
POliticO,oitico, Q.1 NP] +[Fp,0]

Source phrase features

Lemman-grams

(creer), (quey, (creer,que)

PoSn-grams

(VMI) 1, (CS), (VMI,CS),

Coarse Pos-grams

V)1, (Ck, (V,Ch

Chunkn-grams

(B-VP),, (B-CONJP}, (B-VP,B-CONJP)

Source sentence features

Word n-grams

(pronto), (podremosy), (felicitarle)s, (por), (su),
(_,pronto) 1, (pronto,podremos) (podremos,felicitarle),
(felicitarle,por), (por,su), (_,_,pronto) o,
(_,pronto,podremos),, (pronto,podremaos,felicitarle)
(podremos,felicitarle,poy) (felicitarle,por,su)

Lemman-grams

(pronto), (poder}, (felicitar)s, (por), (su), (_,pronto) 1,
(pronto,poder), (poder,felicitary, (felicitar,por), (por,su),
(L,-,pronto)_», (_,pronto,poder),(pronto,poder,felicitar),
(poder,felicitar,por), (felicitar,por,suj

PoSn-grams

(AQ)1, (VMS)2, (VMN)3, (SP), (DP), (LAQ)-1,
(AQ,VMS);, (VMS,VMN)5, (VMN,SP);, (SP,DP),
(--AQ)-2, (LAQ,VMS)_1, (AQ,VMS,VMN);,
(VMS,VMN,SP), (VMN,SP,DP)

Coarse Pos-grams

(A)1, V)2, (V)3, (Sh, (D)s
(A1, (AV)1, (VV)2, (V.Sk, (S,D)
CAV) -1, (A)_2, (A V,V)1, (VV,S), (V,S,D)

Chunkn-grams

(O)1, (B-VP), (I-VP)3, (B-PP), (B-NP), (-,0)-1,
(0,B-VP),, (B-VP,I-VP),, (I-VP,B-PP}, (B-PP,B-NP),
(L-0)_2, (LO,B-VP)_1, (O,B-VP,-VP),
(B-VP,I-VP,B-PP}, (I-VP,B-PP,B-NP)

Bag-of-lemmas

left =0
right = { pronto, poder, felicitar, éxito, politich

Table 6.1: Discriminative phrase translation. An examppliature representation
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appears annotated at the level of shallow syntax (follovéirigyord,..,.,....ros.105 format). Below,

the corresponding source phrase and source sentencesfeatarshown. We have not extracted any
feature from the target phrase, nor the target sentenddenéie correspondence between source
and target phrases (i.e., word alignments). The reasomitir purpose was to use DPT models

to aid an existing SMT system to make better lexical choietsvever, using these type of features

would have forced us to build a new and more complex decoder.

6.2 Local Performance

Analogously to thevord translationtask definition by Vickrey et al. (2005), rather than preidigt
the sense of a word according to a given sense inventopfjrasse translatiorthe goal is to predict
the correct translation of phrase for a given target language, in the context of a sentencés Th
task is simpler than the full translation task in that phritageslations of different source phrases do
not have to interact in the context of the target sentenceveder, it provides an insight to the gain
prospectives.

6.2.1 Data Sets and Settings

We have used the same data sets corresponding to the Spaghbh translation of European
Parliament Proceedings used in Chapter 5 (see Section).5Aftér performing phrase extraction
over the training data (see details in Section 6.3.1), alsoadling source phrases occurring only
once (around 90%)), translation candidates for 1,729,19fceghrases were obtained. In principle,
we could have built classifiers for all these source phragegiever, in many cases learning could be
either unfruitful or not necessary at all. For instance, Zf%these phrases are not ambiguous (i.e.,
have only one associated possible translation), and moas@h count on few training examples.
Based on these facts, we decided to build classifiers onlthfise source phrases with more than
one possible translation and 100 or more occurrences. @ggide to the fact that phrase alignments
have been obtained automatically and, therefore, includeynerrors, source phrases may have a
large number of associated phrase translations. Most asagaaind occur very few times. We
have discarded many of them by considering only as posshiasp translations those which are
selected more than 0.5% of the times as the actual tranglafidhe resulting training set consists
of 30,649 Spanish source phrases. Table 6.2 presents abnefrical description of the phrase set.
For instance, it can be observed that most phrases aredrainkess than 5,000 examples. Most of
them are length-2 phrases and most have an entropy loweBthan

As to feature selection, we discarded features occurrirlg once in the training data, and

constrained the maximum number of dimensions of the feafpaee to 100,000, by discarding the
less frequent features.

“This value was empirically selected so as to maximize thallaccuracy of classifiers on a small set of phrases of
varying number of examples.
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Phrase Phrase
#Occurrences #Phrases| length #Phrases| entropy #Phrases
(100, 500] 23,578 1 7,004| [0,1) 6,154
(500, 1,000] 3,340 2 12,976| [1,2) 11,648
(2,000, 5,000] 2,997 3 7,314| [2,3) 8,615
(5,000, 10,000] 417 4 2,556| [3,4) 3,557
(10,000, 100,000] 295 5 799 | [4,5) 657
> 100,000 22 [5, 6) 18

Table 6.2: Discriminative phrase translation. Numeriegdatiption of the set of ‘all’ phrases

Evaluation scheme
#Examples Development and test Test only
2-9 leave-one-out
10..99 10-fold cross validation
100..499 5-fold cross validation
500..999 3-fold cross validation
1,000..4,999 train(80%)—dev(10%)—test(10%) train(90%)—test(10%)
5,000..9,999| train(70%)—dev(15%)—test(15%) train(80%)—test(20%)
> 10,000 train(60%)—dev(20%)—test(20%) train(75%)—test(250%0)

Table 6.3: Discriminative phrase translation. Evaluatioheme for the local phrase translation task

6.2.2 Evaluation

Local DPT classifiers are evaluated in terms of accuracynagautomatic phrase alignments, which
are used as gold standard. Let us note that, in the case dfaieltexamples, we count the pre-
diction by the classifier as a hit if it matches any of the @ass the solution. Moreover, in order
to maintain the evaluation feasible, a heterogeneous a&iatuscheme has been applied (see Table
6.3). Basically, when there are few examples available wayagross-validation, and the more
examples available the fewer folds are used. Besides, becaass-validation is costly, when there
are more than 1,000 examples available we simply split thr@mtraining, development and test
sets, keeping most of the examples for training and a sirpilaportion of examples for develop-
ment and test. Also, as the number of examples increasesyidléer proportion is used for training
and the bigger proportion is held out for development and tesll cases, we have preserved, when
possible, the proportion of samples of each phrase trémslab folders do not get biased.

6.2.3 Adjustment of Parameters

Supervised learning algorithms are potentially prone terfitvtraining data. There are, however,
several alternatives in order to fight this problem. In thgecaf the SVM algorithm, the contribu-
tion of training errors to the objective function of margiraximization is balanced through tlde
regularization parameter of the soft margin approach @o& Vapnik, 1995). In the case of the
ME algorithm, the most popular method is based on the use afissian prior on the parameters of
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Phrase Phrase
#Occurrences #Phraseg length #Phrases| entropy #Phrases
(100, 500] 790 1 213 | [1,2) 467
(500, 1,000] 100 2 447 | [2,3) 362
(1,000, 5,000] 92 3 240 | [3,4) 139
(5,000, 10,000] 11 4 78| [4,5) 31
(10,000, 50,000] 7 5 22 || [5,6) 1

Table 6.4: Discriminative phrase translation. Numericasatiption of the representative set of
1,000 phrases selected

the model, whose variance?, may be balanced (Chen & Rosenfeld, 1999). Learning passet
are typically adjusted so as to maximize the accuracy ofl Ideasifiers over held-out data. In our
case, a greedy iterative strategy, similar to the optinunastrategy described in Section 5.1.2, has
been followed. In the first iteration several values araltri;n each following iterationyp values
around the top scoring value of the previous iteration aptogzd at a resolution 05 the resolution

of the previous iteration, and so on, until a maximum numbéecations] is reache.

6.2.4 Comparative Performance

We present a comparative study of the four learning scherassribed in Section 6.1.2. For the
case of ME models, we show the results distinctly applyirgyltM-BFGS and GIS optimization
methods. In order to avoid overfitting, tiiéando? parameters have been adjusted. However, be-
cause parameter optimization is costly, taking into acttumlarge number of classifiers involved,
we have focused on a randomly selected set of 1,000 repatisersource phrases with a number
of examples in the [100, 50,000] interval. Phrases with aslegion entropy lower than 1 have not
been considered. A brief numerical description of this setvailable in Table 6.4.

Table 6.5 shows comparative results, in terms of accuralg. I[dcal accuracy for each source
phrase is evaluated according to the number of examplelablaias described in Table 6.3. DPT
classifiers are also compared to thest frequent translatiobaseline (MFT), which is equivalent to
selecting the translation candidate with highest probiglzitcording to MLE. The ‘macro’ column
shows macro-averaged results over all phrases, i.e., theamy for each phrase counts equally
towards the average. The ‘micro’ column shows micro-avetdagccuracy, where each test example
counts equall§. The ‘optimal’ columns correspond to the accuracy compotedptimal parameter
values, whereas the ‘default’ columns correspond to theracy computed on defauli and o2
parameter values. In the case of SVMs, we have used the/8¥Mefault value for the>' param-
eter’. In the case of ME, we have set to 1 for all classifiers. The reason is that this was the most

®In our casen = 2 and = 3. In the case of the’ parameter of SVMs first iteration values are set @ (for
i € [—4, +4]), while for theo? of ME prior gaussians, values af@, 1,2, 3,4, 5}.

®The contribution of each phrase to micro-averaged accurasypeen conveniently weighted so as to avoid the extra
weight conferred to phrases evaluated via cross-validatio

"The C parameter for each binary classifier is set&éﬁ\,ﬁ—)fl, wherez; is a sample vector andy corresponds to
the number of samples. In the case of multiclass SVMs, theuttefalue is 0.01.
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Optimal Default
Model Macro (%) | Micro (%) | Macro (%) | Micro (%)
MFT 64.66 67.60 64.66 67.60
SVMilinear 70.81 74.24 69.50 73.56
SVMpoly2 71.31 74.75 69.94 73.91
SVMmc 70.11 73.48 57.68 63.49
MaxEntp rgs 71.38 74.44 69.87 73.41
MaxEnt g;5 71.08 74.34 67.38 70.69

Table 6.5: Discriminative phrase translation. Local aacyrover a selected set of 1,000 phrases
based on different learning types vs. the MFT baseline

common return value, with a frequency over 50% of the caddbegarameter tuning process on
the selected set of 1,000 phrases.

When theC and o2 are properly optimized, all learning schemes, except timaalticlass
SVMs, exhibit a similar performance, with a slight advartadg favor of polynomial SVMs. The
increase with respect to the MFT baseline is comparableatodibscribed by Vickrey et al. (2005).
These results are, taking into account the differencesdmivioth tasks, also coherent with results
attained in WSD (Agirre et al., 2007). However, when defaalues are used, all models suffer a
significant decrease. For instance, it can be observedshmag GIS for parameter estimation causes
a severe drop in the performance of ME models. More dramsitibd case of multiclass SVMs,
which fall even below the MFT baseline. These two approgdhes, require an exhaustive process
of adjustment of parameters.

6.2.5 Overall Performance

The aim of this subsection is to analyze which factors haveggeb impact on the performance
of DPT classifiers applied to the set all phrases. In this scenario, no matter how greedy the
process is, the adjustment of theando? becomes impractical. For that reason we have used fixed
default values. In the case of SVMs, for the sake of efficiemeyhave limited to the use of linear
kernels. In the case of ME, we encountered problems wherimgrthe MEGA software over all
phrase®. These seemed to be related to parameter estimation —ME Gawthe LM-BFGS
optimization method. In order to solve these problems, vifgeshto the GIS optimization method,
using the MaxEnt software. An excellent comparison on thifop@ance of these two algorithms
was published by Malouf (2002).

Phrase translation results are shown in Table 6.6. Agairgsgls are evaluated according to
the number of examples available, as described in TableWedistinguish between the case of
usingall the 30,649 phrases counting on 100 or more examples (coldnamsl 2), and the case
of considering only a small subset of 317 végquentphrases occurring more than 10,000 times
(columns 3 and 4).

The first observation is that both DPT learning schemes diatme the MFT baseline when
default learning parameters are used. However, as expédiedhodels based on the GIS method

8MEGA exited abruptly and unexpectedly before termination.
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All Frequent
Model Macro (%) | Micro (%) | Macro (%) | Micro (%)
MFT 70.51 80.49 79.77 86.12
SVMilinear 74.52 85.48 86.32 91.33
MaxEnt g, 72.73 82.53 82.31 87.94

Table 6.6: Discriminative phrase translation. Overalbloaccuracy

Phrase | #Occurrences| Entropy Agce
que 605,329| 1.6803| 0,1642
en 557,745 1.4494| 0,0744
no 239,287| 2.3292| 0,0670
una 211,665| 1.3297| 0,0586
un 221,998| 1.2292| 0,0481
del 244,132 1.9712| 0,0375
a 206,437| 0.9429| 0,0230
los 269,679| 0.7635| 0,0057
de 633,120| 0.4936| 0,0032
. 1,078,835 0.1019| 0,0012
y 714,353| 0.6503| -0,0000
el 473,770 0.4623| -0,0000
, 1,232,833| 0.4705| -0,0000
la 801,318| 0.6494| -0,0001
es 271,696| 1.5350| -0,0023

Table 6.7: Discriminative phrase translation. Local perfance of most frequent phrases

for parameter estimation are much less effective than figdévis. A second observation is that
the difference, in terms of micro-averaged accuracy gaih mispect to the MFT baseline, between
using all phrases and focusing on a set of very frequent @anesry small. The reason is that the
set of frequent phrases dominates indeed the evaluatidn54i65% of the total number of test

cases. In contrast, macro-averaged results confer a sigmtify wider advantage to DPT models
applied to the set of frequent phrases, specially in the eBlggear SVMs. This result is significant

taking account the high results of the MFT baseline on thisAs#hird, marginal, observation is that

frequent phrases are easier to disambiguate, presumatdyide of their lower entropy (see MFT
performance).

In Figure 6.2 we analyze several factors which have a dirdleteénce on the behavior of DPT
classifiers. All plots correspond to the case of linear SVFar instance, the top-left plot shows
the relationship between the local accuracy gain and théruof training examples, for all source
phrases. As expected, DPT classifiers trained on fewer draraphibit the most unstable behavior,
yielding a maximum accuracy gain of 0.65 and a maximum deere&0.30. However, in general,
with a sufficient number of examples (over 10,000), DPT dii@ss outperform the MFT baseline.
It can also be observed that for most of the phrases trainedona than around 200,000 examples
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Figure 6.2: Discriminative phrase translation. Analydiplrase translation results

the accuracy gain is very low. The reason, however, is indlethat these are phrases with very
low translation entropy, mostly stop words, such as puticimanarks {’ , “” ), determiners“el” ,
“la” ,“los” , “las” , “un” , “una” ), or conjunctions and prepositiony/{ , “de” , “en” ,“a” ). There

is a very interesting positive case, that of phrégee”, which acts mostly as a conjunction or
relative pronoun, and that most often gets translatedthiat” or “which” . This phrase, which
appears more than 600,000 times in the data with a translatiopy of 1.68, attains an accuracy
gain of 0.16. Let us show, in Table 6.7, some illustrativeesasf the translation of very frequent

phrases, sorted in decreasing order according to the agcgain.

The top-right plot in Figure 6.2 shows the relationship kesw micro-averaged accuracy and
source phrase length. There is improvement across all@leagths, but, in general, the shorter the
phrase the larger the improvement. This plot also indidat&tsphrases up to length-3 are on average
harder to disambiguate than longer phrases. Thus, thenessieebe a trade-off between phrase
length, level of ambiguity (i.e., translation entropy)damumber of examples. Shorter phrases are
harder because they exhibit higher ambiguity. DPT is a bettalel for these phrases because it is
able to properly take advantage of the large number of trgiexamples. Longer phrases phrases
are easier to model because they present a lower ambiguitgidldlength phrases are hardest
because they present a high ambiguity and not many examples.

We further investigate this issue in the two bottom plotse Dlottom-left plot shows the rela-
tionship between the local accuracy gain and translatidropy for all source phrases. It can be
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observed that for phrases with entropy lower than 1 the ganery small, while for higher entropy
levels the behavior varies. In order to clarify this scemavie analyze the relationship between
micro-averaged accuracy and phrase translation entrogiffatent intervals (bottom-right plot).
As expected, the lower the entropy the higher the accuraxtgrdstingly, it can also be observed
that as the entropy increases the accuracy gain in favor dfi@&dels increases as well.

6.3 Exploiting Local Models for the Global Task

In this section, we analyze the impact of DPT models when td& ig to translate the whole sen-
tence. First, we describe our phrase-based SMT baselinensymd how DPT models are inte-
grated into the system. Then, some aspects of evaluatiodisressed, with special focus on the
adjustment of the parameters governing the search proE@sally, MT results are evaluated and
analyzed, and several concrete cases are commented.

6.3.1 Baseline System

Our system follows the phrase-based SMT architecture ibescin Chapter 5, enhanced with-
guistic data viewsup to the level of shallow syntax. Phrase alignments araeted from a word-
aligned parallel corpus linguistically enriched with paftspeech information, lemmas, and base
phrase chunk labels. We have followed tfiebal phrase extractiostrategy described in Section
5.2, i.e., a single translation table is built on the unioralignments corresponding to different
linguistic data views. We have not used tbeal phrase extractiorstrategy because it introduces
more complexity into the process of adjustment of pararaeter

The integration of DPT predictions into the log-linear stieeis straightforward:

log P(e|f) = A\imlog P(e) + Mg log Pue(fle) + Aglog Pue(elf)
+ Aoprlog Popr(el f) + Aglog Py(e, f) + Ay log w(e)

DPT predictions are integrated as an additional featutée) stands for the language model
probability. Py.e(f|e) corresponds to the MLE-based generative translation moadhereast, « (e| f)
corresponds to the analogous discriminative mofgl:(e| f) corresponds to the DPT model which
uses DPT predictions in a wider feature context. Findlye, f) andw(e), correspond to the dis-
tortion and word penalty modéls The A parameters controlling the relative importance of each
model during the search must be adjusted. We further dighissssue in subsection 6.3.4.

*We have used defautharaolis word penalty and distortion models.
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Figure 6.3: Discriminative phrase translation. Rejectiarves. Linear SVMs + softmax (left) vs.
ME (right)

6.3.2 Soft Integration of Dedicated Predictions

We consider every instance ¢f as a separate classification problem. In each case, weftcibigec
classifier outcome for all possible phrase translationsf f;. In the case of ME classifiers, out-
comes are directly probabilities. However, in the case dffSMoutcomes are unbounded real num-
bers. We transform them into probabilities by applying seimax functiordescribed by Bishop
(1995):

e scorei;

Zlf—l e score;y

P(ejlfi) =

where K denotes the number of possible target phrase translatwns diven source phrasg,
and scorg denotes the outcome for target phraseaccording to the SVM classifier trained for
fi- Other transformation techniques can be found in recesralitire. For instance, Platt (2000)
suggested using a sigmoid function.

In order to verify the suitability of the softmax functioneweomputed rejection curves for the
estimated output probabilities with respect to classificatccuracy. For that purpose, we have
used the representative set of 1,000 phrases from subiséctial. This set offers almost 300,000
predictions. In order to calculate rejection curves, thabpbility estimates for these predictions
are sorted in decreasing order. At a certain level of reac{i%), the curve plots the classifier
accuracy when the lowest scoring n% subset is rejected. Wedwdlected values for 100 rejection
levels at a resolution of 1%. We tested different valuestierntparameter of the softmax function.
The selected final value i = 1. In Figure 6.3 (left) we plot the rejection curve for lineavis.
For the sake of comparison, the rejection curve for ME digssiis also provided (right plot). It
can be observed that both rejection curves are increasthgranoth, indicating a good correlation
between probability estimates and classification accuracy

At translation time, we do not constrain the decoder to usértinslatiore; with highest proba-
bility. Instead, we make all predictions available and et decoder choose. We have precomputed
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fi €; Pyie(elf) Pppr(elf)
creoy quey; i believe that 0.3624 0.2405
creoy quey; ithink that 0.1975 0.0506
creogy quey; ithink 0.1540 0.0475
creoy quey; ifeel that 0.0336 0.0511
creoy quey; ithinkit 0.0287 0.0584
creoy quey; i believe that it 0.0191 0.0487
creoy quey; ithink that it 0.0114 0.0498
cregy quey; believe that 0.0108 0.0438
creoy quey; i believe that this 0.0077 0.0482
creoy quey; i believe it 0.0060 0.0439

Table 6.8: Discriminative phrase translation. An exampleganslation table

all DPT predictions for all possible translations of all emiphrases appearing in the test set. The
input text is conveniently transformed into a sequence efiifiers®, which allows us to uniquely
refer to every distinct instance of every distinct word ahdase in the test set. Translation tables
are accordingly maodified so that each distinct occurreneyeiy single source phrase has a distinct
list of phrase translation candidates with their corresirogn DPT predictions. Let us note that, as
described in Section 6.2.1, for each source phrase, notsiceated target translations which have
a MLE-based prediction have also a DPT prediction, but onbsé with a sufficient number of
training examples. In order to provide equal opportunite$®€oth models, we have incorporated
translation probabilities for these phrases into the DP@ehby applying linear discounting.

As an illustration, Table 6.8 shows a fragment of the tramsiatable corresponding to the
phrase‘creo que” in the running example. Notice how this concrete instancet®en properly
identified by indexing the words inside the phrase (“cred gu€‘creo; 4 quey;”). We show MLE-
based and DPT predictions (columns 3 and 4, respectivelypeferal phrase candidate translations
sorted in decreasing MLE probability order. The first obagon is that both methods agree on
the top-scoring candidate translation, “I believe thatbwéver, the distribution of the probability
mass is significantly different. While, in the case of the Mh&sed model, there are three candidate
translations clearly outscoring the rest, concentratimgenthan 70% of the probability mass, in the
case of the DPT model predictions give a clear advantagestimfitscoring candidate although with
less probability, and the rest of candidate translationiaiota very similar score.

By integrating DPT predictions in this manner, we have a@dithaving to implement a new
decoder. However, because translation tables may becorpdavge, this technique involves an
extra cost in terms of memory and disk consumption. Besitliesposes a limitation on the kind of
features the DPT system may use. In particular, features tihe target sentence under construction
and from the correspondence between source and targealigaments) can not be used.

10n our case a sequence ©f tokens, wherev is a word and: corresponds to the number of occurrences of word
seen in the test set before the current occurrence numbeingtance, the source sentence in the example depicted in
Figure 6.1 is transformed intereo4 queis; pronta, podremos felicitarley porigg Sw éxito; politicos .se6” -
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6.3.3 Evaluation

Evaluating the effects of using DPT predictions in the fulinslation task presents two serious
difficulties. In first place, the actual room for improvemeatsed by a better translation modeling
is smaller than estimated in Section 6.2. This is mainly duthé¢ SMT architecture itself which

relies on a search over a probability space in which severdkts cooperate. For instance, in many
cases errors caused by a poor translation modeling may bectea by the language model. In a
recent study over the same data set (Spanish-to-Engliabldteon of the Openlab 2006 corpus),
Vilar et al. (2006) found that only around 28% of the errorsnaaitted by their SMT system

were related to word selection. In half of these cases eamscaused by a wrong word sense
disambiguation, and in the other half the word sense is cbiyet the lexical choice is wrong.

In second place, most conventional automatic evaluatiotniceehave not been designed for this
purpose and may, therefore, not be able to reflect possiljeoiraments attained due to a better
word selection. For instance;-gram based metrics such as BLEU (Papineni et al., 2001)ttend
favor longer string matchings, and are, thus, biased tesvanatd ordering. In order to cope with

evaluation difficulties, we have applied several compldargractions, which are described below.

Heterogeneous Automatic MT Evaluation

We follow the evaluation methodology described in Chaptéor3heterogeneous automatic MT
evaluation. For our experiments, we have selected a rapedse set of around 50 metrics at
different linguistic levels: lexical (i.e., on word formsghallow-syntactic (e.g., on word lemmas,
part-of-speech tags, and base phrase chunks), syntagticoie dependency and constituency trees),
shallow-semantic (on named entities and semantic roled)semantic (e.g., on discourse represen-
tations).

MT Evaluation based on Human Likeness

Heterogeneous MT evaluations might be very informativeweler, a new question arises. Since
metrics are based on different similarity criteria, an@yréfore, biased towards different aspects of
quality, scores conferred by different metrics may be @warsial. Thus, as system developers we
require an additional tool, a meta-evaluation criteriohjch allows us to select the most appropriate
metric or set of metrics for the task at hand.

As seen in Section 2.2.2, the two most prominent meta-etiatueriteria are human acceptabil-
ity and human likeness. In this chapter, partly because weoticount on human assessments, we
have relied on human likeness. We follow the appro@&RLAs approach (Amigo et al., 2005),
applied in two complementary steps. First, we determinesétef metrics with highest discrimi-
native power by maximizing over the KING measure. SecondyuseeQUEEN to measure overall
MT quality according to the optimal metric $&t QUEEN exhibits several properties which make
it really practical for the purpose of our task. First, sif@@g EEN focus on unanimously supported
quality distinctions, it is is a measure of high precisioec@d, QUEEN provides a robust means

"The KING and QUEEN measures are available insidetlQ
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of combining several metrics into a single measure of quatits robust against metric redundancy,
i.e., metrics devoted to very similar quality aspects, aittl vespect to metric scale properties.

A Measure of Phrase Translation Accuracy

For the purpose of evaluating the changes related only teeifgpset of phrases (e.g., ‘all’ vs.
‘frequent’ sets), we introduce a new measug,, which computephrase tanslation_accuracyfor

a given list of source phrases. For every test cagecounts the proportion of phrases from the list
appearing in the source sentence which have a¥aiidnslation both in the target sentence and in
at least one reference translation. Cases in which no valigstation is available in any reference
translation are not taken into account. Moreover, in ordeavoid using the same target phrase
more than once for the same translation case, when a pheassgtation is used, source and target
phrases are discarded. In fact, because in general samitaeget alignments are either unknown
or automatically acquireda,; calculates an approximate solution. Currént implementation
inspects phrases from left to right in decreasing lengtleord

Manual Evaluation

Along this research, we have contrasted automatic evatluaéisults by conducting a number of
manual evaluations. This type of evaluation offers the athge of being directly interpretable.
However, it is expensive to produce, not reusable, posgiblyial, and subjective. In order to
reduce the degree of subjectivity we have simplified the rabaualuation process to the case of
pairwise system comparisons. Human assessors are peksetdection of translation test cases
with associated source and reference translations, andatit outputs by two different systems,
‘A and ‘B’. For each case, assessors must judge whetherutgioby system ‘A’ is better, equal to
or worse than the output by system ‘B’, with respect to adeguiee., preservation of the meaning),
fluency (i.e., sentence well-formedness), and overallitgudh order to prevent judges from biasing
towards either system during the evaluation, the respegibsition in the display of the sentences
corresponding to each system is randomized. In all casasstsial significance is determined
using the sign-test (Siegel, 1956). Agreement betweenegids been estimated based on the
Kappa measure (Cohen, 1960).

6.3.4 Adjustment of Parameters

As we have seen in Section 6.2, DPT models provide transladadidates only for specific subsets
of phrases. Therefore, in order to translate the whole &sakernative translation probabilities for
all the source phrases in the vocabulary which do not haveTapd&diction must be provided. We
have used MLE-based predictions to complete DPT tables.eMeryinteraction between DPT and
MLE models is problematic. Problems arise when, for a givamree phrasef;, DPT predictions
must compete with MLE predictions for larger source phrggesverlapping with or containing;
(See Section 6.3.6). We have mitigated these problems jirgpDPT tables in 3 subtables: (i)

2valid translations are provided by the translation table.
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phrases with DPT prediction, (ii) phrases with DPT predictonly for subphrases of it, and (iii)
phrases with no DPT prediction for any subphrase. Formally:

)\&PDPT(e’f) if 3 PDPT(e’f)
Popr(elf) = Ao Pue (e| f) if (=3 Poerlelf)) A (3 Poer(e'[f) A (f' NV f #0)) (6.1)
A~ Pue(elf) otherwise

where then operation computes overlap between two strings considesexidered word sets.

As discussed in Section 5.1.2, in order to perform fair camspas, allA parameters governing
the search must be adjusted. We have followed the greedyitalgodescribed in Section 5.1.2,
although performing only three iterations instead of five.tHat manner, between 500 and 1,000
different parameter configurations are tried. For thatoeasesults in Chapter 5 are not directly
comparable. The parameter configuration yielding the lgbeore, according to a given automatic
evaluation measure, over the translation of the development set will be usethitsiate the test set.
Let us remark that, since metrics are based on differentagiityi assumptions, optimal parameter
configurations may vary very significantly depending on thedrim used to guide the optimization
process. Most commonly, the BLEU metric is selected. Howawethis work, we additionally
study the system behavior wharparameters are optimized on the basis of human likenesbyi.e
maximizing translation quality according to the QUEEN measover the metric combination of
highest discriminative power according to KING.

For the sake of efficiency, we have limited to the set of ldxicatrics provided by I@r. Met-
rics at deeper linguistic levels have not been used bechagecomputation is currently too slow to
allow for massive evaluation processes as it is the caserahper adjustment. KING optimiza-
tion has been carried out following the algorithm describe&ection 3.4.4. The KING measure
has been computed over a representative set of baselirgrsybased on different non-optimized
parameter configurations. The resulting optimal setis: = { METEOR,,syn, ROUGE, 1.2 },
which includes variants of METEOR and ROUGE, metrics whintgrestingly, share a common
ability to capture lexical and morphological variationsélof stemming, and dictionary lookup).

6.3.5 Results

We compare the performance of DPT and MLE-based models ifuthieanslation task. For that
purpose, we use the development and test sets describedtiorSg.1.1, each consisting of 504
test cases. We have used a system which relies on MLE for theagi®n of translation models
(‘MLE’) as a baseline. We separately study the case of (i) using DRid®et ofall’ phrases and
that of (ii) using DPT predictions for the reduced setf@quent’ phrases. This latter set exhibits
a higher local accuracy. However, most phrases in this setsiagle words. Specifically, this set
consists of 240 length-1 phrases, 64 length-2 phrases,ngghl8 phrases and 1 length-4 phrase.
Thus, it constitutes an excellent material to analyze tkeraation between DPT and MLE-based
probabilities in the context of the global task. Besides #et covers 67% of the words in the test,
whereas the ‘all’ set covers up to 95% of the words. In botlegaBPT predictions for uncovered
words are provided by the MLE model.
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System | QUEEN | METEOR | ROUGE Apt Apt
Config. | (lexical) | (wnsyn) (w_1.2) (all) (frg) BLEU

BLEU-based optimization
MLE 0.4826 0.7894| 0.4385| 0.7099| 0.7915| 0.6331
DPTau 0.4717 0.7841| 0.4383| 0.7055| 0.7823| 0.6429
DPT¢.q | 0.4809 0.7863| 0.4386| 0.7102| 0.7941| 0.6338

QUEEN-based optimization
MLE 0.4872 0.7924| 0.4384| 0.7158| 0.8097| 0.6149
DPTau 0.4907 0.7949| 0.4391| 0.7229| 0.8115| 0.6048
DPT¢rq | 0.4913 0.7934| 0.4404| 0.7245| 0.8251| 0.6038

Table 6.9: Discriminative phrase translation. EvaluatdMT results based on lexical similarity

Moreover, since the adjustment of internal parametérar{do?) is impractical when using all
phrases, based on the results from the Section 6.2, we lmitedito test the behavior of binary
SVMs. Also, for the sake of efficiency, we have limited to kndernels.

Table 6.9 shows automatic evaluation results, before aasteration, according to different
metrics, including BLEU and QUEEN. For the sake of informeatiess, METEOR,,, and
ROUGE, ;5 scores used in QUEEN computations are provided as well. sBhranslation ac-
curacy is evaluated by means of thg, measure, both over the set of ‘all’ and ‘frequent’ phrases.
We have separately studied the cases of parameter opiionigdtased on BLEU (rows 1 to 3) and
QUEEN (rows 4 to 6). The first observation is that in the twoesd3PT models yield an improved
lexical choice according to the respective evaluation imeiding the adjustment of parameters.
However, for the rest of metrics there is not necessarilyramgment. Interestingly, in the case of
BLEU-based optimizations, DPT predictions as an additidéeature report a significant BLEU
improvement over the MLE baseline only when all phrases seel (see rows 2 and 3). In contrast,
in the case of QUEEN-based optimizations, improvements jpdéce in both cases, although with
less significance. It is also interesting to note that thaeiB@ant increase in phrase translation ac-
curacy @,;) only reports a very modest improvement in the rest of mg{isee rows 5 and 6). This
could be actually revealing a problem of interaction betwB®T predictions and other models.

BLEU vs QUEEN

Table 6.9 illustrates the enormous influence of the mettexsed to guide the optimization process.
A system adjusted so as to maximize the score of a specifiéontetes not necessarily maximize
the scores conferred by other metrics. In that respect, Blaatd QUEEN exhibit completely
opposite behaviors. Improvements in BLEU do not necegsiniply improvements in QUEEN,
and vice versa. We have further analyzed this controversiationship by comparing optimal
parameter configurations, and observed ttiatare in a very similar range, except for the weight
of the word penalty model)\(,), close to 0 in the case of BLEU, whereas in the case of QUEEN,
it takes negative values around -1, thus, favoring longardliations. This seems to indicate that
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the heuristically motivated brevity penalty factor of BLEdduld be responsible for the ‘BLEU
vs QUEEN'’ puzzle observed. We have verified this hypothegisigpecting BLEU values before
applying the penalty factor. These are on average 0.02 BL&ktphigher (0.605- 0.625), which
explains part of the puzzle. The other part must be founderfdht that, while BLEU is based on
n-gram precision, QUEEN is a meta-metric which combinesedsfit quality aspects, in this case
borrowed from ROUGE and METEOR.

Heterogeneous Evaluation

We also analyze deeper linguistic quality aspects beyoadettical dimension. In order to favor
performance of linguistic processors, the case of autenti@nslations has been automatically re-
covered using Moses (Koehn et al., 2006), which addresseseaovering as a translation problem.
For that purpose, we have trained Moses out from an artifiiciedllel corpus in which the source
and target sides correspond both to the English side ofdlm@rg corpus, case lowered and normal
case, respectively.

Automatic evaluation results, according to several megjresentatives from different linguis-
tic levels, are shown in Table 6.10. Metrics are grouped r@icg to the level at which they operate
(i.e, lexical, shallow-syntactic, syntactic, shallowysmntic and semantic). We have also computed
two different QUEEN values, namely QUEENT) and QUEENX ). The first value corre-
sponds to the application of QUEEN to the optimal metric coration based on lexical features
only, whereas the second value corresponds to QUEEN agplige optimal metric combination
considering linguistic features at different levels. listlatter case, the optimal metric combination,
obtained following the procedure described in subsectiBi6is: X; . = { SP-NIST,, DR-O,,-x;

1, which includes two metrics respectively based on padpafechr-gram matching, and average
part-of-speech overlap over discourse representations.

First of all, metrics are evaluated according to their &piid distinguish between manual and
automatic translations, as computed by KING over the sitesys under evaluation. It can be
observed that all metrics exhibit little ability to captunaman likeness, close or even under the
KING value a random metric would obtai%)(. The highest KING value is obtained by a metric
based on shallow-syntactic similaritgP-NIST,’, which computes the NIST score over sequences
of parts-of-speech. The lowest KING values are obtained biyios at the shallow-semantic level
(NE and SR families). Metric combinations show only a modegtrovement over individual
metrics in terms of KING.

As to system evaluation, quality aspects are diverse, asdds it is not always the case that
all aspects improve together. However, the most positigaltés in the fact that all metrics based
on lexical similarity consistently prefer DPT systems oMiIE baselines. This confirms that DPT
predictions yield an improved lexical choice. By observsmpres at the lexical level, it can be
observed that most metrics prefer the ‘QRTsystem optimized over BLEU. Only some ROUGE
and METEOR variants prefer the DPT systems optimized oveE@N. After all, theX * set, used
in the QUEEN computation, consists precisely of ROUGE and@PR variants, so this result
was expected. Let us also note, that QUEERN ) values in Tables 6.10 and 6.9 do not match. The
reason is that, while BLEU and ROUGE scores do not vary signifly, the METEOR family is
quite sensitive to case distinctions. Observe, for ingatie difference in METEOR, ,,,, values.
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BLEU-based optim. QUEEN-based optim.
Metric KING MLE DPTau DPTfrq MLE DPTau DPTfrq
1-WER 0.1581| 0.6797| 0.6907| 0.6841| 0.6651| 0.6504| 0.6541
1-PER 0.1448| 0.7679| 0.7763| 0.7700| 0.7571| 0.7397| 0.7481
1-TER 0.1567| 0.7030| 0.7134| 0.7061| 0.6882| 0.6736| 0.6776
BLEU 0.1177| 0.6331| 0.6430| 0.6339| 0.6149| 0.6048| 0.6039
NIST 0.1534| 11.2210| 11.3406| 11.2403| 10.9529| 10.7512| 10.8017
GTM (e = 2) 0.1415| 0.4265| 0.4283| 0.4248| 0.4226| 0.4204| 0.4170
(0]} 0.1210|| 0.7076| 0.7108| 0.7087| 0.7056| 0.6970| 0.7027
ROUGEL 0.1349| 0.6958| 0.6984| 0.6962| 0.6914| 0.6888| 0.6908
ROUGEw 0.1653| 0.4385| 0.4383| 0.4386| 0.4384| 0.4391| 0.4404

METEOR exact | 0.1495|| 0.7214| 0.7197| 0.7209| 0.7217| 0.7232| 0.7234
METEOR wneyn | 0.1706| 0.7589| 0.7569| 0.7580| 0.7602| 0.7610| 0.7599

QUEEN(X) 0.1753| 0.5152| 0.5058| 0.5171| 0.5165| 0.5149| 0.5224
SP-O,-* 0.1376| 0.6844| 0.6843| 0.6842| 0.6842| 0.6760| 0.6811
SP-O 0.1349| 0.6853| 0.6871| 0.6855| 0.6854| 0.6818| 0.6814
SP-NIST; 0.1534| 11.3139| 11.4334| 11.3304| 11.0467| 10.8396| 10.8970
SP-NIST, 0.2156| 10.0258| 10.0853| 9.9871| 9.7950| 9.6265| 9.6064
SP-NIST;0p 0.1812|| 7.6124| 7.6598| 7.6124| 7.5005| 7.3858| 7.3497
SP-NIST. 0.1806| 6.9297| 7.0240| 6.9644| 6.8328| 6.7105| 6.6964

DP-HWC,,-4 0.1171)| 0.2694| 0.2763| 0.2661| 0.2704| 0.2711| 0.2691
DP-HWC -4 0.1720|| 0.4951| 0.4887| 0.4899| 0.4920| 0.4771| 0.4929
DP-HWC,.-4 0.1653| 0.4377| 0.4332| 0.4324| 0.4354| 0.4202| 0.4344

DP-Oy-* 0.1515| 0.5045| 0.5060| 0.5032|| 0.5055| 0.4978| 0.4992
DP-Oc-* 0.1594|| 0.6038| 0.5995| 0.5999|| 0.6003| 0.6006| 0.6000
DP-O,-* 0.1739|| 0.4675| 0.4651| 0.4633| 0.4656| 0.4612| 0.4624
CP-Op-% 0.1343| 0.6824| 0.6836| 0.6832|| 0.6819| 0.6747| 0.6773
CP-O, 0.1389|| 0.6570| 0.6595| 0.6582|| 0.6561| 0.6470| 0.6508
CP-STM-4 0.1521| 06843| 0.6821| 0.6821| 0.6836| 0.6792| 0.6782
NE-O-x% 0.1356] 0.6897| 0.6927| 0.6905| 0.6870| 0.6785| 0.6834
NE-O- 0.0714|| 0.5444| 0.5479| 0.5422| 0.5346| 0.5368| 0.5274
NE-M-% 0.0582|| 0.5279| 0.5314| 0.5267|| 0.5165| 0.5202| 0.5136
SR-O,-%p 0.1190|| 0.3519| 0.3584| 0.3618|| 0.3527| 0.3353| 0.3440
SR-M,p 0.1012|| 0.2192| 0.2149| 0.2227|| 0.2220| 0.2179| 0.2185
SR-O,4 0.1310 0.5556| 0.5579| 0.5657| 0.5526| 0.5357| 0.5424
DR-O,-*p 0.1534| 0.5436| 0.5379| 0.5360| 0.5403| 0.5380| 0.5335
DR-O,pb 0.1640| 0.6576| 0.6471| 0.6470|| 0.6540| 0.6542| 0.6437
DR-Op; 0.1799|| 0.5386| 0.5325| 0.5311|| 0.5358| 0.5338| 0.5253
DR-STM-4, 0.1680|| 0.5254| 0.5201| 0.5203|| 0.5241| 0.5194| 0.5137
DR-STM-4; 0.1640| 0.4678| 0.4640| 0.4634| 0.4657| 0.4590| 0.4555
[QuEEN(X;,) | 0.2262]] 0.3485] 0.3474] 0.3447] 0.3325] 0.3302] 0.3062]

Table 6.10: Discriminative phrase translation. Heteregels evaluation of MT results
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At the shallow-syntactic level, all metrics prefer agaie tlbbPT,;’ system optimized over
BLEU, except theSP-O,-+" metric, which does not have any clear preference. At theasyiot
level, however, most metrics prefer the ‘MLE’ systems. Otilg shallowest metrics, e.dbP-
HWC,-4 (i.e., lexical head-word matching over dependency tre&Ry),-~ andCP-O.-x (i.e., lex-
ical overlap over parts-of-speech and phrase constitusetsm to prefer DPT systems, always
optimized over BLEU. This is a very interesting result siriceeveals that an improved lexical
similarity does not necessarily lead to an improved syitattucture.

At the shallow-semantic level, while NE-based similasti&though not very informative,
tend to prefer the ‘DPJ;’ system optimized over BLEU, SR metrics seem to prefer theTh.,’
system optimized over BLEU, whereas at the properly sem&miel, metrics based on discourse
representations prefer the ‘MLE’ system optimized over (BN Therefore, no clear conclusions
can be made on which model or optimization strategy lead$titar semantic structure.

Finally, according t@QUEEN(X ), i.e., combining theSP-NIST,” and‘DR-O,,-x;" metrics on
the basis of human likeness, the best system is the ‘MLE'lieseptimized over QUEEN, with a
slight advantage over the two DPT variants optimized oveEBL

Manual Evaluation

Several conclusions must be drawn from these results, Eiestack of consensus between metrics
based on different similarity criteria reinforces the némdevaluation methodologies which allow

system developers to take into account a heterogeneousality aspects. Second, the fact that
an improved lexical similarity does not necessarily leadriomproved syntactic or semantic struc-
ture might be revealing problems of interaction between PRictions and the other models in

the SMT system. We have verified this hypothesis through doeummf manual evaluations. These
have revealed that gains are mainly related to the adequamndion, whereas for fluency there

is no significant improvement. For instance, Table 6.11gresmanual evaluation results corre-
sponding to the pairwise comparison of the QP Isystem and the MLE baseline, both optimized
over QUEEN. The set of test cases was selected based onlthwirfigl criteria:

e sentence length between 10 and 30 words.
e at least 5 words have a DPT prediction.

e DPT and MLE outputs differ.

A total of 114 sentences fulfilled these requirements. Thauakevaluation was conducted
following the procedure described in Section6.3.3. Fodg@s participated in the evaluation. Each
judge evaluated only half of the cases. Each case was esxdlbgittwo different judges. Thus, we
obtained 228 human assessments. According to human asséeedPT system outperforms the
MLE-based system very significantly with respect to adeguabereas for fluency there is a slight
advantage in favor of the MLE baseline. Overall, there isghsbut significant advantage in favor
of the ‘DPT’ system.

130bserve the low KING values attained, except for the caskesNE-O,-+«" metric, which also considers overlap
among tokens which are not named entities.



140 CHAPTER 6. DISCRIMINATIVE PHRASE SELECTION FOR SMT

Adequacy | Fluency | Overall
DPT > MLE 89 68 99
DPT = MLE 100 76 46
DPT < MLE 39 84 83

Table 6.11: Discriminative phrase translation. Manualwat#on of MT results

6.3.6 Error Analysis

Tables 6.12, 6.13 and 6.14 show three sentence fragmergsaling the different behavior of the
system configurations evaluated. We start, in Table 6.12sHowing a positive case in which
the DPT predictions help the system to find a better trawmsidir ‘fuera sancionada’ Observe
how baseline SMT systems, whose translation models arel lmas®LE, all wrongfully translate
‘fuera’ as‘outside’ instead of as an auxiliary verb form (e.gvas’ or ‘were’) or past form of the
accompanying vertsancionado’(e.g.,'sanctioned’or ‘penalised) . In contrast, ‘DPT;;’ systems
are able to provide more appropriate translations for thimge, regardless of the metric guiding
the parameter optimization process. Observe also, how JP3ystems, which, unfortunately, do
not count on DPT predictions for this not frequent enouglapby commit all the same mistake than
MLE-based systems.

Tables 6.13 and 6.14 present two cases in which the metrdinguthe optimizations has a
stronger influence. In Table 6.13, all MLE baseline systemmgfully translatécuyo nombreinto
‘whose behalf’ Only the ‘DPT,;’ system optimized over BLEU is able to find a correct tranistat
(‘whose name. In Table 6.14, while MLE-based systems provide all fagtyrect translations of
‘van a parar a’into ‘go to’, DPT predictions may cause the system to wrongfully traeslean
a parar a’ into ‘are going to stop ta’ Only the ‘DPT;,,’ system optimized over BLEU is able
to find a correct translation. The underlying cause behieddhwo cases is that there is no DPT
prediction for‘cuyo nhombre’and‘van a parar a’, two phrases of very high cohesion, but only for
subphrases of it (e.gguyo’, ‘nombre’, ‘van’, ‘a’, ‘parar’, ‘van a’, ‘a parar’). DPT predictions for
these subphrases must compete with MLE-based predictiwriarfer phrases, which may cause
problems of interaction.

6.4 Related Work

As we have seen in Section 4.4, other authors have recemijucted similar experiments. Al-
though tightly related, there exist several importantedti#hces between the works by Carpuat and
Wu (2007b), Bangalore et al. (2007), Stroppa et al. (200@&ct et al. (2008), and ours. These
differences are discussed below. We have divided themée timain categories: (i) task, (ii) system
and (iii) evaluation differences.

6.4.1 Task Differences

Several translation scenarios are approached. The mosttemp differences are related to:
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Source Yo quisiera que el incumplimiento institucional del Coiosfejera sancionado...]

Ref 1 I would like the Council ’s institutional infringemenod be penalised...]
Ref 2 I would like the Council 's institutional non-fulfilment ofd obligationsto be
sanctioned]...]
Ref 3 I would like to see the institutional non-compliance of theu@cil punished...]
BLEU-based optimizations
MLE I would like to see the failure to comply with institutionalitside of the

Councilsanctioned]...]

DPT,;  |'would like to see the institutional breach of the Counedls sanctioned...]

DPTt-q |would like to see the institutional breach of the Coumnitside sanctioned...]

QUEEN-based optimizations

MLE I would like to see the failure to comply with the institutedrCouncilsoutside
sanctioned]...]

DPT.  'would like to see the failure to comply with the institutmnf the Council
were to be sanctioned...]

DPT4.q | would like to see the failure to comply with the institutainCouncilsoutside
sanctioned]...]

Table 6.12: Discriminative phrase translation. Case oflysis#1. DPT models help

Source [...] aquel diputadauyo nombreno conozco [...]

Ref1 [...] the Membemwhose namd do not know [...]

Ref 2 [...] the Honourable Membemwhose namd can not recall [...]
Ref 3 [...] that Membemwhose namd ignore [...]

BLEU-based optimizations
MLE [...] that Membemwhose behalfl do not know [...]
DPTay  [...] that Membemwhose namd do not know [...]
DPT¢rq [...] that Membewhose behalfl do not know [...]
QUEEN-based optimizations
MLE [...] that Memberon whose behalf am not familiar with [...]
DPT.;  [...] that Memberon whose behalfl am not familiar with [...]
DPTgrq [...] that MEPwhose behalfl am not familiar with [...]

Table 6.13: Discriminative phrase translation. Case oflysia#2. DPT models may help
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Source [...] poco mas del 40 % de los fondwan a parar a esos paises .

Ref 1 [...] only slightly more than 40 % of the mon@&nds up inthose countries .
Ref 2 [...] little more than 40 % of these fun@sd up inthese countries .

Ref 3 [...] little more than 40 % of the fundare going tothose countries .

BLEU-based optimizations
MLE [...] little more than 40 % of the fundgo to them.
DPTau  [...] little more than 40 % of the fundsill stop to these countries.
DPTzrq [...] little more than 40 % of the fundgo to these countries

QUEEN-based optimizations
MLE [...] just a little more than 40 % of the mongypes to those countries
DPT.y  [...] little more than 40 % of the fundsre going to stop to these countries
DPT¢rq [...] little more than 40 % of the fundare going to stop to these countries

Table 6.14: Discriminative phrase translation. Case oflysisi#3. DPT models may not help

e Language pair (Spanish-to-English, Chinese-to-Enghsabic-to-English, French-to-English,
and English-to-Portuguese).

e Task domain, as determined by the corpus (Europarl, NISE®Hansards, United Nations,
or heterogeneous compilations).

For instance, while we work in the Spanish-to-English tiaien of European Parliament pro-
ceedings, Carpuat and Wu (2007b) and Bangalore et al. (206 on the Chinese-to-English
translation of basic travel expressions and newswirelestiand Stroppa et al. (2007) work on
the Chinese-to-English and Italian-to-English translaf basic travel expressions. Additionally,
Bangalore et al. (2007) present results on Arabic-to-EBhglianslation of proceedings of the United
Nations and on French-to-English translation of procegsliof the Canadian Parliament.

All these works focus on a single translation domain. In @it Specia et al. (2008), worked on
the English-to-Portuguese translation of a heterogendatssset of different domains and genres,
compiled from various sources, including the Bible, litgraction, European Parliament proceed-
ings and a mixture of smaller sources. The significant im@noents reported evince that dedicated
lexical selection models are a valid solution to tackle dionsaifts.

6.4.2 System Differences
Other differences are related to the translation systesif:its

e System Architecture (Log-linear models vs. Finite-sted@$ducers vs. Reranking)

e Learning scheme (Support Vector Machines, Maximum EntrNjpyve Bayes, Boosting, Ker-
nel PCA-based models, Memory-based learning, Inductivgid_Brogramming, and com-
bined schemes).

For instance, while we rely on SVM predictions, Carpuat and (2007b) use an ensemble of
four combined models (naive Bayes, maximum entropy, mmsand Kernel PCA-based models),
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Stroppa et al. (2007) rely on memory-based learning, Bangait al. (2007) use maximum entropy,
and Specia et al. (2008) use Inductive Logic Programming)knd SVMs.

Besides, Bangalore et al. (2007) employ a slightly diffe@M T architecture based on stochas-
tic finite-state transducers which addresses the traosltsk as two separate processes: (i) global
lexical selection, i.e., dedicated word selection, andsg@intence reconstruction. Moreover, their
translation models are indeed bilingual language moddigy Rlso deal with reordering in a dif-
ferent manner. Prior to translation, the source senteneislered so as to approximate the right
order of the target language. This allows them to perform aatamic decoding.

Apart from the corpus heterogeneity, the approach by Spgah (2008) has two other very
interesting particularities. First, their dedicated nledee exploited in the context of a syntax-based
dependency treelet SMT system (Quirk et al., 2005). Sedbed, integration strategy is based on
using ILP predictions as an additional feature for the rram of n-best lists (Och et al., 2004).
As explained in Section 4.2.3, reranking has the the cosbs$iply discarding valid translations
when compiling then-best list. In order to overcome this limitation, they exged then-best list
by generating new translations which include the most @tgbeandidate translations according to
dedicated predictions.

6.4.3 Evaluation Differences

There are also significant differences in the evaluatiorrgss. Bangalore et al. (2007) and Specia
et al. (2008) rely on BLEU as the only measure of evaluatidm@pa et al. (2007) additionally
rely on NIST, and Carpuat and Wu (2007b) show results acegrth eight different standard
evaluation metrics based on lexical similarity includingtBBJ and NIST. In contrast, we have
used a set of evaluation metrics operating at deeper liiguevels. We have also relied on the
QUEEN measure, which allows for non-parametric combimetiof different metrics into a single
measure of quality. Besides, we have conducted severatgses of manual evaluation.

6.5 Conclusions of this Chapter

In this chapter, we have shown that discriminative phrasestation may be successfully applied
to SMT. Despite the fact that measuring improvements in veaidction is a very delicate issue,
experimental results, according to several well-knownricebased on lexical similarity, show that
dedicated DPT models yield a significantly improved lexichabice over traditional MLE-based
ones. However, by evaluating linguistic aspects of qudlégyond the lexical level (e.g., syntactic,
and semantic), we have found that an improved lexical chaiw semantic structure does not
necessarily lead to an improved grammaticality. This tdsa$ been verified through a number of
manual evaluations, which have revealed that gains arelyrmailated to the adequacy dimension,
whereas for fluency there is no significant improvement.

Besides, this work has also served us to study the role ofraito metrics in the development
cycle of MT systems, and the importance of meta-evaluatile.have shown that basing evalua-
tions and parameter optimizations on different metrics teag to very different system behaviors.
For system comparison, this may be solved through manublai@ns. However, this is imprac-
tical for the adjustment of parameters, where hundredsfiardnt configurations are tried. Thus,
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we argue that more attention should be paid to the meta-av@atuprocess. In our case, metrics
have been evaluated on the basis of human likeness. Othitiossl exist. The main point, in our
opinion, is that system development is metricwise (seei@e2t2.3). This is a crucial issue, since,
most often, system improvements focus on partial aspectsadity, such as word selection or word
ordering, which can not be always expected to improve tageth

Finally, the fact that improvements in adequacy do not leaahtimproved fluency evinces that
the integration of local DPT probabilities into the statiat framework requires further study. We
believe that if DPT models considered features from thestasgle under generation and from the
correspondence between source and target, phrase ti@mglaturacy would improve and coop-
eration with the decoder would be even softer. AlthougHl, gtiedictions based on local training
may not always be well suited for being integrated in thedtiganslation. Thus, we also argue that
if phrase translation classifiers were trained in the cdraéihe global task their integration would
be more robust and translation quality could further improvhe possibility of moving towards a
new global DPT architecture in the fashion, for instancehose suggested by Tillmann and Zhang
(2006) or Liang et al. (2006) should be considered.



Chapter 7

Domain Adaptation of an SMT System

As discussed in Chapter 4, Section 4.5, empirical MT systaiffer a significant quality drop when
applied to a different domain. In this chapter, we analyZteint alternatives so as to adapt an
existing SMT system to a new domain when few or none domagaip data are available.

We present a practical case study on the automatic tramslatto Spanish of the glosses in
the English WordNet (Fellbaum, 1998). Glosses are shotiodiary definitions that accompany
WordNet synsets. We have selected this scenario for sengasbns. First, WordNet glosses are
a useful resource which has been successfully applied tg MBR tasks. For instance, Mihalcea
and Moldovan (1999) suggested an automatic method for gengrsense-tagged corpora which
uses WordNet glosses. Hovy et al. (2001) used WordNet gassexternal knowledge to improve
their Webclopedia Question Answering (QA) system. Secdhere exist wordnets for several
language’, but they contain, in general, very few glosses. For ingtaincthe current version of the
Spanish WordNet fewer than 10% of its synsets have a glossvetsely, since version 1.6, every
synset in the English WordNet has a gloss. We believe thattaadeo rapidly obtain glosses for
all wordnets may be helpful, and an opportunity for curranpgical MT techniques to show their
applicability. These glosses could serve as a starting jpaim further stage of revision. Moreover,
from a conceptual point of view, the idea of enriching wordnesing other wordnets results very
attractive.

We start by building an out-of-domain SMT system based onralle& corpus of European
Parliament Proceedings. We have analyzed its domain depeadby applying it directly to the do-
main of dictionary definitions. As expected, this systertsfa properly translate WordNet glosses.
After inspecting particular cases, we found out that mosirerare related to unseen events (e.g.,
unknown words, expressions and syntactic constructidnsjrder to adapt the system to the new
domain, we suggest several techniques, all based on theoration of outer knowledge:

e Use of In-domain Corpora. We count on a small set of Spanish hand-developed glosses
generated, however, without considering its English cewpatrt. This in-domain corpus is
used to construct specialized statistical models, whiehvegll suited for being combined
with out-of-domain models.

A list of wordnets currently under development is availahtehttp://www.globalwordnet.org/gwa/
wordnet _table.htm

145
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e Use of Close-to-domain Corpora.We count on two large monolingual Spanish electronic
dictionaries. We use these dictionaries to build addititaraguage models.

e Use of Domain-independent Knowledge Source$Ve exploit the information contained in
WordNet itself to construct domain-independent transtathodels.

We show that these simple techniques may vyield a very signifitnprovement. Results are
also accompanied by a detailed process of qualitative analysis.

7.1 Corroborating Domain Dependence

Prior to elaborating on adaptation techniques, we verigypfoblem of domain dependence of SMT
systems in the specific scenario.

7.1.1 Settings

We have built two individual baseline systems. Both are gdutzased SMT systems constructed
following the procedure described in Section 5.1. The diffiees between them are related only to
the training data utilized:

e Out-of-domain Baseline System.The first baseline system (‘EU’) is entirely based on a
collection of 730,740 out-of-domain parallel sentencesagked from the Europarl corpus
(Koehn, 2003&), which corresponds exactly to the training data providethbyorganizers of
the Shared Task 2Exploiting Parallel Texts for Statistical Machine Traraglon” of the ACL
2005 Workshop oriBuilding and Using Parallel Texts: Data-Driven Machine amslation
and Beyond”(Koehn & Monz, 2005). A brief numerical description of this data set is
available in Table 7.1.

¢ In-domain Baseline System.The second baseline system (‘WNG’) is entirely based on a
small in-domain corpus of English—Spanish parallel glsssehis has been collected using
the Multilingual Central RepositorfyMCR), a multilingual lexical-semantic database which
connects several WordNets at the synset level (Atseriak,e2004). The MCR has been
developed following the EuroWordNet design (Vossen etH97), in the context of the
MEANING project. Currently, the MCR includes linked versions of the EngliSpanish,
Italian, Basque and Catalan wordnets. Overall, we count set af 6,519 parallel glosses,
which correspond to 5,698 nouns, 87 verbs, and 734 adjscti¥e have removed examples
and parenthesized texts. Glosses have also been tokemidedse lowered. In addition, we
have discarded some of these parallel glosses based orfférertie in length between the
source and the target. The gloss average length for theirgsb|843 glosses was 8.25 words
for English and 8.13 for Spanish. Finally, gloss pairs haserbrandomly split into training

>The Europarl Corpus is available athttp://people.csail.mit.edu/people/koehn/
publications/europarl

3http://www.statmt.org/wpt05/

*http://www.lsi.upc.edu/ ~nlp/meaning/
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#distinct
Set  #sentences #tokens  tokens

Spanish | Train 730,740 15,676,710 102,885
Test 2,000 60,276 7,78p

English | Train 730,740 15,222,105 64,122
Test 2,000 57,945 6,054

Table 7.1: WMT 2005 Shared Task. Description of the Spakistlish data sets

#distinct
Set #sentences #tokens tokens

Train 4,843 39,311 6,358

Spanish | Test 500 3,981 1,454
Dev 500 4,193 1,509

Train 4,843 40,029 6,495

English | Test 500 4,036 1,544
Dev 500 4,167 1,56(

Table 7.2: Description of the small Spanish-English comgiysarallel glosses

(4,843), development (500) and test (500) sets. A brief mioaledescription is available in
Table 7.2.

7.1.2 Results

Table 7.3 shows automatic evaluation results of the twolipessystems, both over development
and test sets, according to several standard metrics badegical similarity. We also compare the
performance of the ‘EU’ baseline on these data sets wittegp its performance on the Europarl
test set from the ACL 2005 MT workshop (‘acl05-test’). Theffiobservation is that, as expected,
there is a very significant decrease in performance (from 2.08 according to BLEU) when
the ‘EU’ baseline system is applied to the new domain. Sonthisfdecrement is also due to a
certain degree of free translation exhibited by the set aflale quasi-parallelglosses. We further
discuss this issue in Section 7.2.3.

Results obtained by the ‘WNG’ system are also very low, thosignificantly higher than those
attained by the ‘EU’ system. This is a very interesting fadthough the amount of data utilized to
construct the ‘WNG’ baseline is 150 times smaller than thewam utilized to construct the ‘EU’
baseline, its performance is better consistently accgrttirall metrics. We interpret this result as a
corroboration that models estimated from in-domain dat&ige higher precision.

We also compare these results to those attained by a conaingysiem. We use the on-line
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GTM GTM METEOR NIST | BLEU
System (e=1)|(e=2) (wnsyn)
Development

EUpgseline 0.3131| 0.2216 0.2881| 2.8832| 0.0737
WNG pgseiine | 0.3604| 0.2605 0.3288| 3.3492| 0.1149
SYSTRAN | 0.4257| 0.2971 0.4394| 3.9467| 0.1625
Test
EUpuscline 0.3131| 0.2262 0.2920| 2.8896| 0.0790
WNGgseiine | 0.3471] 0.2510 0.3219| 3.1307| 0.0951
SYSTRAN | 0.4085| 0.2921 0.4295| 3.7873| 0.1463

acl05-test
EUpgsciine | 0.5699] 0.2429] 0.5153] 6.5848] 0.2381

Table 7.3: Translation of WordNet glosses. Baseline parémce

version 5.0 of SYSTRAR, a general-purpose MT system based on manually-definechlexind
syntactic transfer rules. The performance of the baseligems is significantly worse than SYS-
TRAN'’s on both development and test sets. This confirms tliesygread assumption that rule-
based systems are more robust than SMT systems againseshardpmain. The difference with
respect to the specialized ‘WNG’ also suggests that the atnofudata used to train the ‘WNG’
baseline is clearly insufficient.

7.1.3 Error Analysis

Tables 7.4 and 7.5 show, respectively, several positivenagdtive cases on the performance of the
‘EU’ out-of-domain system, based on the GTM F-measure-(2). We use this measure because,
in contrast to BLEU, it has an intuitive interpretation. dipresents the fraction of the automatic-
reference translation grid covered by aligned blocks. Adtic translations are accompanied by
the scores attained. Interestingly, most of the positigesare somehow related to the domains of
politics and/or economy (e.g., cases 1, 2, 4, 5, 6 and 7 ineTall), which are close to the domain
of the corpus of parliament proceedings utilized. As to laaldy translations, in many cases these
are due to unknown vocabulary (e.g., cases 2, 3, 5 and 6 ie Tah). However, we also found many
translations unfairly scoring too low due ¢qoiasi-parallelismi.e., divergences between source and
reference glosses (e.g., cases 1, 4, and 7 in Table 7.5).

7.2 Combining Knowledge Sources

In order to improve the baseline results, first, we use magakl electronic dictionaries so as to
build close-to-domain language models. Then, we studewifft alternatives for combining in-
domain and out-of-domain translation models. Thus, we ntogeworking scenario in which the

Shttp://www.systransoft.com/
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Synset Content
00392749#n| Source the office and function gpresident
Reference cargo y funcién de presidente
F1=0.9090 | Target el cargo y funcion de presidente
00630513#n| Source the action ofattacking the enemy
Reference acciony efecto de atacar al enemigo
F1=0.6871 | Target accion de atacar al enemigo
00785108#n| Source the act of giving hope or support to someone
Reference accion de dar esperanza o apoyo a alguien
F1=0.9412 | Target la accibn de dar esperanza o apoyo a alguien
00804210#n| Source the combination of two or moreommercial companie
Reference combinacion de dos o mas empresas
F1=0.7142 | Target la combinacion de dos o mas comerciales compaiis
05359169#n| Source the act ofpresenting a proposal
Reference acto de presentar una propuesta
F1=0.9090 | Target el acto de presentar una propuesta
06089036#n| Source amilitary unit that is part of ararmy
Reference unidad militar qgue forma parte de un ejército
F1=0.0609 | Target unidad militar que forma parte de un ejército
06213619#n| Source a group ofrepresentativesr delegates
Reference grupo de representantes o delegados
Fi=1 Target grupo de representantes o delegados
06365607#n| Source a safe place
Reference lugar seguro
Fi=1 Target lugar seguro
01612822#v| Source perform an action
Reference realizar una accion
Fi=1 Target realizar una accion

Table 7.4: Translation of WordNet glosses. Error analy&iggdod translations)
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Synset Content
1 | 00012865#n| Source a feature of the mental life of a living organism
Reference rasgo psicolbgico
F.=0 Target una caracteristica de la vida mental de un organismo vivo
2 | 00029442#n Source the act of departing politely
Reference accion de marcharse de forma educada
F.=0 Target el acto dedeparting politely
3 | 02581431#n Source a kitchen appliance for disposing of garbage
Reference cubo donde se depositan los residuos
F.=0 Target kitchenunaapplianceparadisposingde garbage
4 | 05961082#n Source people in general
Reference grupo de gente que constituye la mayoria de la poblaciamey g
define y mantiene la cultura popular y las tradiciones
F1=0.0833 | Target gente en general
5| 07548871#n Source a painter of theatrical scenery
Reference persona especializada en escenografia
F.=0 Target unapainterdetheatrical scenery
6 | 10069279#n Source rowdy behavior
Reference comportamiento escandaloso
F.=0 Target rowdy behavior
7 | 00490201#a) Source without reservation
Reference sin reservas
F.=0 Target movido por una devocion 0 un compromiso entusiasta y diei

Table 7.5: Translation of WordNet glosses. Error analygighad translations)
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Dictionary | #definitions | #tokens | distinct tokens
D1 142,892 | 2,111,713 79,063
D2 168,779 | 1,553,311 72,435

Table 7.6: Description of two Spanish electronic dictidgesir

large out-of-domain corpus contributes with recall by gowvg unseen events, while the in-domain
corpus contributes mainly with precision, by providing maiccurate translations.

7.2.1 Adding Close-to-domain Language Models

In first place we turned our eyes to language modeling. Intiatdio the language model built from
the Europarl corpus (‘EU’) and the specialized language ehbdsed on the small training set of
parallel glosses (‘WNG’), we have built two specializeddaage models, ‘D1’ and ‘D2’, based on
two large monolingual Spanish electronic dictionaries:

e D1 Gran diccionario de la Lengua Espafiola (Marti, 1996).

e D2 Diccionario Actual de la Lengua Espafiola (Vox, 1990).
A brief numerical description of these dictionaries, aftase lowering, is available in Table 7.6.

Automatic evaluation results, over the development setshown in Table 7.7. We tried several
configurations. In all cases, language models were combhiithdequal probability. As expected,
the closer the language model is to the target domain, therbeisults. The first observation is
that using language models ‘D1’ and ‘D2’ outperforms theulssusing the out-of-domain ‘EU’
language model. A second observation is that best reselis afl cases consistently attained when
using the ‘WNG’ language model, either alone or combineth wlibse-to-domain language models.
This means that language models estimated from small s@tsdoimain data are helpful. A third
observation is that a significant gain is obtained by incraally adding in-domain or close-to-
domain specialized language models to the baseline systauoarding to all metrics but BLEU
for which no combination seems to significantly outperfoimra tWNG’ baseline alone. Observe
that the best results are obtained, except in the case of Blbglhe system using the out-of-
domain ‘EU’ translation model combined with in-domain aagtionally, close-to-domain language
models. We interpret this result as an indicator that teditsl models estimated from out-of-domain
data are helpful because they provide recall. Anotheresterg point is that adding an out-of-
domain language model (‘EU’) does not seem to help, at leasbined with equal probability to
in-domain models. Same conclusions hold for the test set, to

Tuning the System

Adjusting the Pharaoh parameters that control the impoetar the different probabilities govern-
ing the search may yield significant improvements. In ouel&8IT system, there are 4 important
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Translation Language GT™M GTM | METEOR | NIST | BLEU
Model Model (e=1)| (e=2) (wnsyn)

EU EU 0.3131| 0.2216 0.2881| 2.8832| 0.0737
EU WNG 0.3714| 0.2631 0.3377| 3.4831| 0.1062
EU D1 0.3461| 0.2503 0.3158| 3.2570| 0.0959
EU D2 0.3497| 0.2482 0.3163| 3.2518| 0.0896
EU D1+ D2 0.3585| 0.2579 0.3244| 3.3773| 0.0993
EU EU+ D1+ D2 0.3472| 0.2499 0.3160/| 3.2851| 0.0960
EU D1+ D2+ WNG 0.3690| 0.2662 0.3372| 3.4954| 0.1094
EU EU+D1+D2+WNG | 0.3638| 0.2614 0.3321]| 3.4248]| 0.1080
WNG EU 0.3128| 0.2202 0.2689| 2.8864| 0.0743
WNG WNG 0.3604| 0.2605 0.3288| 3.3492| 0.1149
WNG D1 0.3404| 0.2418 0.3050| 3.1544| 0.0926
WNG D2 0.3256| 0.2326 0.2883| 3.0295| 0.0845
WNG D1+ D2 0.3331| 0.2394 0.2995| 3.1185]| 0.0917
WNG EU+ D1+ D2 0.3221| 0.2312 0.2847| 3.0361| 0.0856
WNG D1+ D2+ WNG 0.3462| 0.2479 0.3117]| 3.2238]| 0.0980
WNG EU+D1+D2+WNG | 0.3309| 0.2373 0.2941]| 3.0974| 0.0890

Table 7.7: Translation of WordNet glosses. Combined lagguaodels

kinds of parameters to adjust: the language model prokiabilf\;,,,), the translation model prob-
ability (\y), the distortion model probability\i) and the word penalty facton(,). In our case, it

is specially important to properly adjust the contributminthe language models. We adjusted pa-
rameters by means of a software based orDtbenhill Simplex Method in MultidimensioiiBress

et al., 2002) implemented by our work fellow Patrik Lamb@itie tuning was based on maximizing
the BLEU score attained over the development set. We tuneatdhpeters: 4 language models
(MimEUS AtmbD1y NimbD2, Mimw NG), the translation model\(), and the word penalty\(,)®. Evalu-
ation results, in Table 7.8, report a substantial improvemelighest scores are attained using the
‘EU’ translation model. Interestingly, the weight of laragge models is concentrated on the small
but precise in-domain ‘WNG’ language modal.(yw v = 0.95).

7.2.2 Integrating In-domain and Out-of-domain Translation Models

We also study the possibility of combining out-of-domaiml amdomain translation models aiming
at achieving a good balance between precision and recalitlds better MT results. Two differ-
ent strategies have been tried. In a first strategy we singigatenate the out-of-domain corpus
(‘EU’) and the in-domain corpus (‘WNG’). Then, we constrilce translation model (EUWNG’)
as described in Section 5.1. A second manner to proceed iisei@rly combine the two different

®Final values when using the ‘EU’ translation model aig.zv = 0.22, Aimp1 = 0, Mimp2 = 0.01, Aimwne =
0.95, \p, = 1, and\,, = —2.97, while when using the ‘WNG’ translation model final value® ay,,rv = 0.17,
Aimp1 = 0.07, A\jmep2 = 0.13, Aimw g = 1, A(b = 0.95, and\, = —2.64.
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Translation Language GTM GTM | METEOR | NIST | BLEU
Model Model (e=1)| (e=2) (wnsyn)
development
EU EU+D1+D2+WNG | 0.3856| 0.2727 0.3695| 3.6094| 0.1272
WNG EU+D1+D2+WNG | 0.3688| 0.2676 0.3452| 3.3740| 0.1269
test
EU EU+D1+D2+WNG | 0.3720| 0.2650 0.3644| 3.4180| 0.1133
WNG EU+D1+D2+WNG | 0.3525| 0.2552 0.3343| 3.1084| 0.1015

Table 7.8: Translation of WordNet glosses. Effects of tgrtime contribution of language models

Translation Language GTM GTM | METEOR | NIST | BLEU
Model Model (e=1)|(e=2)| (wnsyn)
development
EUWNG WNG 0.3949| 0.2832 0.3711| 3.7677| 0.1288
EUWNG EU+D1+D2+WNG | 0.4081| 0.2944 0.3998| 3.8925| 0.1554
EU+WNG | WNG 0.4096| 0.2936 0.3804| 3.9743| 0.1384
EU+WNG | EU+D1+D2+WNG | 0.4234| 0.3029 0.4130| 4.1415]| 0.1618
test
EUWNG WNG 0.3829| 0.2771 0.3595| 3.6777| 0.1123
EUWNG EU+D1+D2+WNG | 0.3920| 0.2810 0.3885| 3.6478| 0.1290
EU+WNG | WNG 0.3997| 0.2872 0.3723| 3.8970| 0.1227
EU+WNG | EU+D1+D2+WNG | 0.4084| 0.2907 0.3963| 3.8930| 0.1400

Table 7.9: Translation of WordNet glosses. Combined teditsi models

translation models into a single translation model (‘EU+@/N In this case, we can assign different
weights (v) to the contribution of the different models to the searcle &&n also determine a cer-
tain threshold? which allows us to discard phrase pairs under a certain pilitya These weights
and thresholds have been adjusted as detailed in Sectidn Q@timal values arev;,,gy = 0.1,
wimw NG = 0.9, Oypu = 0.1, andby,, 1w vag = 0.01. Interestingly, at combination time the impor-
tance of the ‘WNG' translation modeb{,,,;w no = 0.9) is much higher than the importance of the
‘EU’ translation model gy = 0.1).

Table 7.9 shows results for the two strategies after turboth over development and test sets.
As expected, the ‘EU+WNG’ strategy consistently obtairestilest results according to all metrics
both on the development and test sets, since it allows tereatjust the relative importance of each
translation model. However, both techniques achieve aa@mpetitive performance. For instance,
according to BLEU, results improve from 0.13 to 0.16, anafi@.11 to 0.14, for the development
and test sets, respectively. Improvement is also captweddl lother metrics except NIST, which
improves only for the development set.

We measured statistical significance of the results usiagotiotstrap resampling technique,
over the BLEU measure, as described by Koehn (2004b). Thec@bfftdence intervals extracted
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from the test set after 10,000 samples are the following:

IEUbasclinc = [006427 00939]
TWNGyeetine = 10.0788,0.1112]
IgU+WNG,., = [0.1221,0.1572]

Since intervals do not overlap, we can conclude that diffegzs are statistically significant at
the 95% level of confidence.

How much in-domain data is needed?

In principle, the more in-domain data the better, but theag be difficult and expensive to collect.
Thus, a very interesting issue in the context of our work i& mouch in-domain data is needed
in order to improve results attained using out-of-domaitaddone. To answer this question we
focus on the ‘EU+WNG’ strategy and analyze the impact ongearance of specialized models
extracted from an incrementally larger number of examplés.compute three variants separately,
by considering the use of the in-domain data: (i) only fortifa@slation model (TM), (ii) only for
the language model (LM), and (iii) simultaneously in bothdels (TM+LM). In order to avoid the
possible effect of over-fitting we focus on the behavior @ tist set. Note that the optimization of
parameters is performed at each point inth&xis using only the development set.
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Figure 7.1: Translation of WordNet glosses. Impact of theamh of in-domain data
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Results are presented in Figure 7.1. A significant initiahgd around 0.3 BLEU points is
observed when adding as few as 100 glosses. In all casegat imtil around 1,000 glosses are
added that the ‘EU+WNG’ system stabilizes. After that, hssoontinue improving as more in-
domain data are added. We observe a very significant inctggsist adding around 3,000 glosses.
Another interesting observation is the boosting effechefcombination of TM and LM specialized
models. While individual curves for TM and LM tend to be motahde with more than 4,000 added
examples, the TM+LM curve still shows a steep increase ml#st part.

7.2.3 Error Analysis

We inspected results at the sentence level for the best coafign of the ‘EU+WNG’ system,
based on the GTM F-measure= 1). The first observation is that 196 sentences out from the 500
obtain an F-measure equal to or higher than 0.5 on the deweldjpset (181 sentences in the test
set), whereas only 54 sentences obtain a score lower thaifiliede numbers give a first idea of the
relative usefulness of our system.

Table 7.10 shows some translation cases selected for disnusie compare translations by
the ‘EU’, ‘'WNG’ and ‘EU+WNG’ systems. ‘Source’ and referencorrespond respectively to the
input gloss, and the human reference translation (i.eea®rp output). Automatic translations are
accompanied by the scores attained.

Case 1 is a clear example of unfair low score. The problematdburce and reference are
not parallel but ‘quasi-parallel’. Both glosses define thms concept but in a different way. Thus,
metrics based on rewarding lexical similarities are not weted for these cases. Cases 2, 3, 4 and
5 are examples of proper cooperation between ‘EU’ and ‘WN@dets. ‘EU’ models provides
recall, by suggesting translation candidates for ‘bombs’pace below’, while ‘WNG’ models
provide precision, by choosing the right translation for &tack’ or ‘the act of’.

We also compared the ‘EU+WNG’ system to SYSTRAN. In the cdS®YSTRAN, 167 sen-
tences obtain a score equal to or higher than 0.5 whereanh#hses obtain a score lower than 0.1.
These numbers are slightly under the performance of the \EN&’ system. Table 7.11 shows
some translation cases selected for discussion. Case Hhirs @aig example of both systems ob-
taining very low scores because of ‘quasi-parallelism’s&2 and 3 are examples of SYSTRAN
outperforming our system. In case 2, SYSTRAN exhibits higitecision in the translation of ‘ac-
companying’ and ‘illustration’, whereas in case 3 it showghbr recall by suggesting appropriate
translation candidates for ‘fibers’, ‘silkworm’, ‘cocoqrithreads’, and ‘knitting’. Cases 4, 5 and 6
are examples in which our system outperforms SYSTRAN. e da®ur system provides higher
recall by suggesting an adequate translation for ‘top ofething’. In case 5, our system shows
higher precision by selecting a better translation foreraln case 6, our system generates a better
gloss introduction, by translating ‘relating to or chagaidtic’ as ‘relativo o perteneciente’. How-
ever, we observed that SYSTRAN tends in most cases to cehsntences exhibiting a higher
degree of grammaticality.
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Synset Content
1 | Source — of the younger of two boys with the same family name
Reference — gue tiene menos edad
System GTM | Output
EU 0.0000| de acuerdo con el mas joven de dos boys con la misma famitia fa
WNG 0.1333| de la younger de dos boys tiene el mismo nombre familia
EU+WNG | 0.1111| de acuerdo con el mas joven de dos muchachos tiene el mismg
nombre familia

2 | Source — an attack by dropping bombs
Reference — ataque con bombas

System GTM | Output

EU 0.2857| atacar por cayendoombas

WNG 0.2500| ataquerealizado por dropping bombs
EU+WNG | 0.5000| ataquerealizado por cayendoombas

3 | Source — the temporal property of two things happening at the same tim
Reference — accion de pasar a la vez

System GTM | Output

EU 0.1250| el temporal propiedad de dos cosas ocurren en el tiempo
WNG 0.2222| temporal la propiedad de dos cosas sucede at la misma eltiemp
EU+WNG | 0.5882| temporal la propiedad de dos cosassar a la vez

4 | Source — the act of informing by verbal report

Reference  — accion y efecto de informar con una explicacion verbal
System GTM | Output

EU 0.1250| acto de la informacion por verbales ponencia

WNG 0.7059| accion y efectode informing por verbaéxplicacion
EU+WNG | 0.5882| accion y efectode informaba por verbalesplicacion

5 | Source — a price below the standard price
Reference — precio que esta por debajo de lo normal
System GTM | Output

EU 0.5000| un precio por debajo de lanorma precio
WNG 0.0000| una price below numbero estandar price
EU+WNG | 0.5000| un precio por debajo de laestandar precio

Table 7.10: Translation of WordNet glosses. Error analy8i$Combined knowledge sources)
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Synset Content
1 | Source — a newspaper that is published every day
Reference — publicacbn perbdica monoteratica
System GTM | Output
EU+WNG | 0.0000| peribdico que se publica diario
SYSTRAN | 0.0000| un periédico que se publica cada dia
2 | Source — brief description accompanying an illustration
Reference — pequeiia descripcion que acompana una ilustracion
System GTM | Output
EU+WNG | 0.1818| breve descripcion adjuntas un aclaracion
SYSTRAN | 0.8333| breve descripciogue acompdia una ilustracion
3 | Source — fibers from silkworm cocoons provide threads for knitting
Reference — fibras de los capullos de gusano de seda que proporcionan h
para tejer
System GTM | Output
EU+WNG | 0.1905]| fibers desde silkworm cocoons proporcionan threads pattinin
SYSTRAN | 0.7333| lasfibras de loscapullosdel gusano de sedg@roporcionan los
hilos de rosca parhacer punto
4 | Source — the top of something
Reference — parte superior de una cosa
System GTM | Output
EU+WNG | 1.0000| parte superior de una cosa
SYSTRAN | 0.0000] la tapa algo
5| Source — a rate at which something happens
Reference — ritmo al que sucede una cosa
System GTM | Output
EU+WNG | 0.6667| unritmo al que sucede algo
SYSTRAN | 0.3077| una tarifa en la cual algo sucede
6 | Source — of or relating to or characteristic of peru or its people
Reference — relativo o perteneciente a per(
System GTM | Output
EU+WNG | 0.7692| relativo o pertenecientea perl , su gente
SYSTRAN | 0.1053| de o en lo que concierne o caracteristica de Perl o de s& gen

Table 7.11: Translation of WordNet glosses. Comparisoh Y STRAN
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GTM GTM NIST | BLEU
DataSet| (e=1) | (e = 2)

dev 0.3091] 0.2196] 3.0953] 0.0730
dewx 0.3428| 0.2456] 3.5655] 0.0949
[test | 0.3028] 0.2155] 3.0274] 0.0657]

| EU-test | 0.5885| 0.3567]| 7.2477]| 0.2725]

Table 7.12: Translation of WordNet glosses. Baseline perdmce

7.3 Domain Independent Translation Models

As an additional question, we study the possibility of ekpig the information contained in the
MCR for the purpose of MT. Other authors have previously igdpinformation extracted from

aligned wordnets. Tufis et al. (2004b) presented a method/tod Sense Disambiguation (WSD)
based on parallel corpora. They utilized the aligned wasiimeBalkaNet (Tufis et al., 2004a). In
our case, we suggest using the MCR to build a domain-indegpervdord-based translation model.

7.3.1 Baseline Performance

We define a new baseline system entirely based on out-ofidodada. In that manner, we aim
at favoring the occurrence of unseen events in the test date in the previous sections, our
baseline system follows the architecture described in @nhap Section 5.1. Again, it is based
on the Europarl corpus (Koehn, 2003a). However, in ordepted up the construction process,
we selected a subset of 327,368 parallel segments, of |&mgthfive to twenty, for training. The
Spanish side contained 4,243,610 tokens, whereas thesEsifie consisted of 4,197,836 tokens.

For in-domain test, we counted on a preliminary version efgét of parallel glosses described
in Section 7.1.1, containing 6,503 gloss pairs extractechfan earlier version of the MCR. These
corresponded to 5,684 nouns, 87 verbs, and 732 adjectixesnfites and parenthesized texts were
also removed. Gloss average length is 8,03 words for Enghslhi7,83 for Spanish. Parallel glosses
were also tokenized and case lowered, and randomly splitiexelopment (3,295 gloss pairs) and
test (3,208 gloss pairs).

Automatic evaluation results are shown in Table 7.12. Thopmance of the system on the new
domain is very low in comparison to the performance on a sebheld-out portion of 8490 sentences
from the Europarl corpus (‘EU-test’). The ‘dewrow refers to the results over the development
set by an enhanced version of the baseline system combiméngtdomain language model with
the two close-to-domain language models extracted forritheand ‘D2’ Spanish dictionaries, as
described in Section 7.2.1. Consistently with previousltesa significant improvement is obtained.

7.3.2 Exploiting the MCR

Outer knowledge may be supplied to the Pharaoh decoder mtatimg the input with alternative
translation options via XML-markup. In the default settwe enrich all nouns, verbs, and adjec-
tives by looking up all possible translations for all theieamings according to the MCR. For the



7.3. DOMAIN INDEPENDENT TRANSLATION MODELS 159

3,295 glosses in the development set, a total of 13,335 woodsesponding to 8,089 nouns, 2,667
verbs and 2,579 adjectives respectively, were enrichechaie not worked on adverbs yet because
of some problems with our lemmatizer. While in WordNet theaea for adverbs is an adjective
our lemmatizer returns an adverb.

Translation pairs are heuristically scored according soritbmber of senses which may lexi-
calize in the same manner. For every unknown word we credst aflcandidate translations by
looking up, for every sense associated to its lemma in theeedanguage, every possible lexicaliza-
tion of the corresponding senses, if any, in the target lagguas provided by the MCR. Candidate
translations are then scored by relative frequency. Fdymlat w;, p; be the source word and
PoS, andw. be the target word, we define a functiSiount(wy, ps, w.) which counts the num-
ber of senses fofwy, py) which can lexicalize as... Then, translation probabilities are computed
according to following formula:

Scount(wg,pf, we)

P(wg,prlwe) = 5 (7.1)

(ws,pp) Scount(wy,pyr, we)

For instance, the English worbdlank’ as a noun is assigned nine different senses in WordNet.
Four of these senses may lexicalize as the SpanishWwangdo’ (financial institution) whereas only
one sense lexicalizes asilla’ (the bank of a river). The scoring heuristic would assigrs¢heairs
a respective score dfands.

Let us note that in WordNet all word forms related to the saomept are grouped and repre-
sented by their lemma and part-of-speech (PoS). Therdafgret word forms must be lemmatized
and PoS-tagged. WordNet takes care of the lemmatizatign $ter PoS-tagging we used the
SVMTool package (Giménez & Marquez, 2004b) (see SectibniB Appendix B). Similarly, at
the output, the MCR provides us with lemmas instead of worth$oas translation candidates. A
lemma extension must be performed. We utilized componeois the Freeling package (Carreras
et al., 2004) for this step. See, in Table 7.13, an exampleMk ¥put in which six glosses have
been enriched. Source tokens appear highlighted.

Experimental Results

Several strategies have been tried. In all cases we alldweeddcoder to bypass the MCR-based
model when a better (i.e., likelier) solution could be fowrging the phrase-based model alone.
Results are presented in Table 7.14.

We defined as new baseline the system which combines thelédmgéeage models (‘no-MCR’).
In a first attempt, we enriched all content words in the vaiwtaset with all possible translation
candidates (‘ALL). No improvement was achieved. By ingpeg input data, apart from PoS-
tagging errors, we found that the number of translationomgstgenerated via MCR was growing too
fast for words with too many senses, particularly verbs. rifeoto reduce the degree of polysemy
we tried limiting to words with 1, 2, 3, 4 and 5 different sesisg¢ most (‘S1’, ‘S2’, ‘S3’, ‘'S4’ and
‘S5"). Results improved slightly.

Ideally, one would wish to work with accurately word sensgadibiguated input. We tried
restricting translation candidates to those generatedhdynost frequent sense only (‘Akkrg’).
There was no significant variation in results. We also stlidie behavior of the model applied
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<NN english="consecuciones|consecuci on|logro|logros|
realizaciones|realizaci on" prob="0.1666|0.1666|0.1666|
0.1666|0.1666|0.1666"> accomplishment </NN> of an objective

an organism such as akNN english="insectolinsectos"

prob="0.5/0.5"> insect</NN>that habitually shares the

<NN english="madriguera|madrigueras|nido|nidos"
prob="0.25|0.25|0.25|0.25"> nest </NN> of a species of

<NN english="hormigalhormigas" prob="0.5/|0.5"> ant </NN>

the part of the human<NN english="piernal|piernas"

prob="0.5/0.5"> leg </NN> between the <NN english=
"rodillajrodillas" prob="0.5]|0.5"> knee </NN> and the
<NN english="tobillo|tobillos" prob="0.5|0.5"> ankle </NN>

a<JJ english="casada|casadas|casado|casados"
prob="0.25|0.25|0.25|0.25"> married </JJ> man

an<NN english="abstracciones|abstracci on|extracciones|
extracci  on|generalizaciones|generalizaci on|pintura abstracta"
prob="0.3333|0.3333|0.0666|0.0666|0.0666|0.0666|0.0 666">
abstraction </NN> belonging to or <JJ english="caracter istica|
caracter isticas|caracter istico|caracter isticos|t ipica|

t ipicas|t  ipico|t ipicos" prob="0.125|0.125|0.125|0.125|0.125]
0.125|0.125]0.125">characteristic</JJ> of two <NNS english=
"entidad|entidades" prob="0.5|0.5"> entities </NNS> or

<NNS english="partes" prob="1"> parts </NNS> together

strengthening the concentration by removingJJ english="irrelevante|
irrelevantes” prob="0.5|0.5"> extraneous</JJ> material

Table 7.13: Domain-independent translation modeling. rAda input
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GTM GTM NIST | BLEU
Strategy (e=1)| (e=2)

no-MCR 0.3428| 0.2456| 3.5655| 0.0949
ALL 0.3382| 0.2439| 3.4980| 0.0949
ALL nrrs 0.3367| 0.2434| 3.4720| 0.0951
S1 0.3432| 0.2469| 3.5774| 0.0961
S2 0.3424| 0.2464| 3.5686| 0.0963
S3 0.3414| 0.2459| 3.5512| 0.0963
S4 0.3412| 0.2458| 3.5441| 0.0966
S5 0.3403| 0.2451| 3.5286| 0.0962
NarrFs 0.3361| 0.2428| 3.4588| 0.0944
V MFs 0.3428| 0.2456| 3.5649| 0.0945
AMFs 0.3433| 0.2462| 3.5776| 0.0959
UNK prs 0.3538| 0.2535| 3.7580| 0.1035
UNK-and-S1| 0.3463| 0.2484| 3.6313| 0.0977
UNK-or-S1 0.3507| 0.2523| 3.7104| 0.1026

Table 7.14: Domain-independent translation modelinguResn the development set

separately to nouns (‘Nrs’), verbs (‘Vyrrs'), and adjectives (‘Asrs’). The system worked
worst for nouns, and seemed to work a little better for adjestthan for verbs.

All'in all, we did not find an adequate manner to have the twodletion models to cooperate
properly. Therefore, we decided to use the MCR-based madglfor those words unknown to
the phrase-based model (UNKrs"). 7.87% of the words in the development set are unknown. A
significant relative improvement of 9% in BLEU score was avbid. We also tried translating only
those words that were both unknown and monosemous (‘UNKS&Y and those that were either
unknown or monosemous (‘UNK-or-S1"). Results did not ferthmprove.

System Tuning

We also performed an exhaustive process of adjustment tfrsygarameters for the ‘no-MCR’
and ‘UNK,,rg’ strategies on the development set. As in the previous@gcparameter tuning
was carried out by maximizing the BLEU score over the develemt set. Evaluation results for
the test set, in Table 7.15, report an overall 64% relatiyeravement with respect to the baseline.

Table 7.15: Domain-independent translation modeling.uResn the test set

GTM GTM NIST | BLEU
Strategy | (e=1) | (e = 2)
baseline 0.3028| 0.2155]| 3.0274| 0.0657
noMCR 0.3431| 0.2450| 3.4628| 0.0965
UNK yrs | 0.3554| 0.2546| 3.7079| 0.1075
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7.3.3 Error Analysis

Tables 7.16 and 7.17 show several cases for the ‘UMK and ‘ALL 5, rg’ strategies, respectively.
Automatic translations are accompanied by the scoreqattai MCR-based models prove their
usefulness (e.g., all cases in Table 7.16 and cases 1 andabla 7.17), but sometimes they may
also cause the system to make a mistake (e.g., cases 3, 4jrafdtde 7.17).

Synset Content
00025788#n| Source accomplishment of an objective
Reference consecucion de un objetivo
F,=0.75 Tpaseline accomplishment de un objetivo
Fi=1 Tymer consecu@n de un objetivo
00393890#n| Source the position of secretary
Reference posicion de secretario
F1=0.3333 | Tpaseline Situacion de secretary
F=0.5714 | Typicr el cargo desecretario
00579072#n| Source the activity of making portraits
Reference actividad de hacer retratos
F,=0.75 Traseline actividad de hacer portraits
Fi=1 Tymer actividad de haceetratos
00913742#n| Source an organism such as an insect that habitually shares the nest
of a species of ant
Reference organismo que comparte el nido de una especie de hormigas
Traseline  UN Organismo como un insect que habitually comparte el nest
de una especie de ant
F1=0.3752 | Typer un organismo como un insecto que habitually compartedel
F1=0.5713 de una especie dormiga
04309478#n| Source the part of the human leg between the knee and the ankle
Reference parte de la pierna humana comprendida entre la rodilla 'y
el tobillo
F1=0.3254 | Tuaseline parte de la persona leg entre los knee y el ankle
F1=0.5898 | Tyicr parte de la persongiernaentre larodilla y el tobillo

Table 7.16: Translation of WordNet glosses. Error analygigdomain-independent translation
probabilities, ‘UNKy; g’ strategy)
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Synset Content
00029961#n| Source the act of withdrawing
Reference accion de retirarse
F1=0.2857 | Tpaseline €l acto de retirar
F=0.5714 | Typcr el acto deetirarse
00790504#n| Source a favorable judgment
Reference opinion favorable
F=0.4 Traseline UNa sentencia favorable
F,=0.8 TrymCR unaopinion favorable
04395081#n| Source source of difficulty
Reference fuente de dificultad
F=1 Traseline fuente de dificultad
F=0.6667 | Typicr fuente dgproblemas
04634158#n| Source the branch of biology that studies plants
Reference rama de la biologia que estudia las plan
F1=0.6799 | Tpaseline ramade la biologia que estudios plantas
F.=0.8 TmcCR rama de la biologia que estudactoria
10015334#n| Source balance among the parts of something
Reference equilibrio entre las partes de algo
F=1 Traseline €quilibrio entre las partes de algo
F=0.8334 | Typcr equilibrio entre las partes dmtidades

tas

Table 7.17: Translation of WordNet glosses. Error analydigdomain-independent translation
probabilities, ‘ALL;rg’ Strategy)
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7.3.4 Discussion

Overall, by working with specialized language models and RARased translation models we
achieved a relative gain of 63.62% in BLEU score (0.0657 976) when porting the system

to a new domain. However, there is a limitation in our apphoa@/hen we markup the input to

Pharaoh we do not allow MCR-based predictions to interattt phirase-based predictions. We are
somehow forcing the decoder to choose between a word-td-tramslation and a phrase-to-phrase
translation. Better ways to integrate MCR-based modelsdutecoding are required. A possi-

ble solution would be to apply the method described for tliegration of discriminative phrase

translation probabilities described in Section 6.3.

On the other hand, more sophisticated heuristics shouldh&daered for selecting and scoring
MCR-based translation candidates. The WordNet topologydcbe exploited so as to build bet-
ter domain-independent translation models. Relationk aschypernymy/hyponymy, holonymy/-
meronymy, or information such as the associated WordNetailonor the conceptual distance be-
tween synsets, could be useful for the purpose of discritme@hrase selection.

7.4 Conclusions of this Chapter

We have studied the problem of domain-dependence in thexdoof SMT systems through a
practical case study on the porting of an English-to-Spaplsrase-based SMT system from the
domain of parliament proceedings to the domain of dictiprkafinitions.

The first observation is that an SMT system trained on owenfiain data fails to properly
translate in-domain data. This is mainly due to the largguage variations between both domains
(vocabulary, style, grammar, etc.). We have suggestedaleimple techniques in order to improve
the performance of SMT systems when ported to new domairecifally, we have exploited the
possibility of combining: (i) in-domain corpora, (ii) clegso-domain corpora, and (iii) domain-
independent knowledge sources.

We have shown that it is possible to adapt an existing SMTegydb a very different domain
using only a very small amount of in-domain or close-to-dodata. We have built specialized
language and translation models, and close-to-domairutagegmodels. These proposals together
with a good tuning of the system parameters have lead to @leataprovement of results, accord-
ing to several standard automatic MT evaluation metricss Bhost in performance is statistically
significant according to the bootstrap resampling testritest by Koehn (2004b) applied over the
BLEU metric. The main reason behind this improvement is thatlarge out-of-domain corpus
provides recall, while the in-domain corpus provides @ieci. We have presented a qualitative
error analysis supporting these claims. We have also agkehtiébe important question of how much
in-domain data is needed so as to adapt an out-of-domaiensy€ur results show that a significant
improvement may be obtained using only a minimal amount-afdmain data.

As a complementary issue, we have exploited WordNet togalodpuild domain-independent
translation models directly extracted from the aligneddmeits in the MCR. We present a rigorous
study grouping words according to several criteria (pftpmech, ambiguity, etc.). All in all, we
did not find an adequate manner to have the domain-indepeh@eslation models to properly
cooperate with other translation models. Better integratéchniques should be studied.
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Finally, apart from experimental findings, this study hasegated, as an end product, a valuable
resource. We have completed the Spanish WordNet by addingatically generated glosses for
all synsets lacking of gloss. Although far from being petfélis material has served as an excellent
starting point for the process of manual revision and pdgtag, which is currently ongoing.

Moreover, all the methods used are language independenutimasl the availability of the re-
quired in-domain or close-to-domain additional resourc&hus, other wordnets and similar re-
sources could be enriched using the presented techniques.
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Chapter 8

Conclusions

This chapter discusses the main contributions of this baokell as future research work. In
Section 8.1, we present a summary of the main results andothdusions that can be derived.
Section 8.2 is a brief note on two software packages develafmng this work, which have been
made freely and publicly available to the NLP community fesearch purposes. Finally, Section
8.3 outlines future work and research directions.

8.1 Summary

We have exploited current NLP technology for empirical M@ &s evaluation. Problems addressed
in this book fall into two main research lines: (i) automa#d@ evaluation, and (ii) development of
an Empirical MT system.

8.1.1 MT Evaluation

Our main contribution in this part is the proposal of a noviebction towards heterogeneous au-
tomatic MT evaluation. In first place, we have compiled a seh of automatic measures devoted
to capture MT quality aspects at different linguistic levéb.g., lexical, syntactic, and semantic).
We have shown that metrics based on deeper linguistic irgtom (syntactic/semantic) are able to
produce more reliable system rankings than metrics whioit their scope to the lexical dimen-
sion, specially when the systems under evaluation are dfexelit nature. We have also presented
two simple strategies for metric combination. Our approaiférs the important advantage of not
having to adjust the relative contribution of each metrithi® overall score.

Linguistic metrics present, however, a major shortcomigey rely on automatic linguistic
processors which may be prone to error. At the documengisystvel, experimental results have
shown that these metrics are very robust against parsingseiThe reason is that these are metrics
of high precision. When they capture a similarity they aghhi confident. However, at the sentence
level, results indicate that these metrics are, in geneddlas reliable overall quality estimators as
lexical metrics, at least when applied to low quality tratisihs. The problem is related to the lack
of recall due to parsing errors or to the absence of parsimghd latter case, we have shown that
backing off to lexical similarity is an effective strategy as to improve their performance.

167
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We strongly believe that future MT evaluation campaignsutdhdenefit from the results pre-
sented in this work, for instance, by including metrics dfedént linguistic levels, and metric
combinations. The following set could be used:

{ ‘ROUGEy’, ‘METEOR 5", ‘DP-HWC,-4’, ‘DP-O.-+", ‘DP-O;-%', ‘DP-O,-%,
‘CP-STM-9', ‘SRO,.-, ‘SR-0,.,/, ‘DR-O,,~*" }

This set includes several metric representatives fronedifft linguistic levels, which have been
observed to be consistently among the top-scoring over a vddety of evaluation scenarios.

Besides, as we have discussed, currently there is a growiegest in metric combination
schemes. Thus, other researchers could exploit the ricbfsagtrics presented in this work to
feed their combination method with linguistic features.

As an additional result, we have shown how to perform hetamegus processes of error anal-
ysis using linguistic metrics on the basis of human likeneSsir proposal allows developers to
rapidly obtain detailed automatic linguistic reports oeittsystem’s capabilities.

8.1.2 Empirical MT

The second part of the book is devoted to the incorporatidimgtiistic knowledge in the devel-
opment of an empirical MT system. We have built a state-efdtht phrase-based SMT system
and completed several steps of its development cycle eddist our evaluation methodology for
heterogeneous automatic MT evaluation.

First, we have used linguistic processors to build shabgwtactic word and phrase alignments.
We have shown that data sparsity is a major cause for the Heskiaress in the incorporation
of linguistic knowledge to translation modeling in SMT. ividual translation models based on
enriched data views underperform the baseline system,lyndure to a severe decrease in recall.
However, combined models yield a significantly improvechstation quality. We have presented
and discussed the pros and cons of two different combinaiohemes. Besides, the report on
heterogeneous evaluation shows that improvements take pteother quality dimensions beyond
the lexical level.

Our main contribution is, however, our approach to deddatatiscriminative lexical selection
(Giménez & Marquez, 2009a). Despite the fact that meagumprovements in lexical selection
is a very delicate issue, experimental results, accordingeteral well-known metrics based on
lexical similarity, show that dedicated DPT models yieldigngicantly improved lexical choice
over traditional MLE-based ones. However, by evaluatinguistic aspects of quality beyond the
lexical level (e.g., syntactic, and semantic), we have dbtivat an improved lexical choice does
not necessarily lead to an improved syntactic or semamtictsire. This result has been verified
through a number of manual evaluations, which have reveahkdgains are mainly related to the
adequacy dimension, whereas for fluency there is no signifiogprovement.

Besides, this work has also served us to study the role ofraitto metrics in the development
cycle of MT systems, and the importance of meta-evaluatitie.have shown that basing evalua-
tions and parameter optimizations on different metrics taagl to very different system behaviors.
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For system comparison, this may be solved through manublai@ns. However, this is imprac-
tical for the adjustment of parameters, where hundredsfiardnt configurations are tried. Thus,
we argue that more attention should be paid to the meta-avatuprocess. In our case, metrics
have been evaluated on the basis of human likeness. Othitiossl exist. The main point, in our
opinion, is that system development is metricwise. Thdhesmetric (or set of metrics) guiding the
development process must be able to capture the possillgy qaaiations induced by system mod-
ifications. This is a crucial issue, since, most often, syst@provements focus on partial aspects
of quality, such as word selection or word ordering, which nat be always expected to improve
together.

As a side question, we have studied the problem of domaiertigmce in the context of SMT
systems through a practical case study. The first observigithat, as expected, an SMT system
trained on out-of-domain data fails to properly translatelomain data. This is mainly due to
the large language variations between both domains (vtaghstyle, grammar, etc.). We have
suggested several simple techniques in order to improv@ahermance of SMT systems when
ported to new domains. Our approach exploits the possililitcombining: (i) in-domain cor-
pora, (ii) close-to-domain corpora, and (iii) domain-ipdadent knowledge sources. We have built
specialized language and translation models from in-domamall parallel corpus, and nearly spe-
cialized language models from medium-size monolinguapaa of a similar domain. The main
reason behind the obtained improvement is that the largefeddmain corpus provides recall,
while in-domain and close-to-domain corpora provide f@ied. A qualitative error analysis sup-
porting these claims has been presented. In addition, weedlaw addressed the important question
of how much in-domain data is needed so as to adapt an oudro&ih system. Our results show
that a significant improvement may be obtained using onlyramal amount of in-domain data. As
a complementary issue, we have also studied the possitfiléyploiting WordNet topology to build
domain-independent translation models directly extchétem the aligned wordnets in the MCR.
A rigorous study grouping words according to several datépart-of-speech, ambiguity, etc.) has
been presented. However, we did not find an adequate manmewéthe domain-independent
translation models to properly cooperate with other ti@ieh models. Better integration tech-
niques should be applied. Finally, our study has served tictethe MCR by providing an auto-
matically generated gloss for all synsets in the SpanishdiWet. This material is currently under
manual revision.

8.2 Software

This work has contributed as well with the development of $eftiware packages which are publicly
available for research purposes released under the GN@il&sseral Public Licen$éLGPL) of
the Free Software FoundatfriThese packages are:

IQur: The IQur Framework for MT Evaluation is the adaptation of thaRLA Framework (Amigo
et al., 2005), originally designed for the evaluation of fadomatic Summarization task, to

Thttp:/iwww.fsf.org/licenses/Igpl.html
2http://www.fsf.org/



170 CHAPTER 8. CONCLUSIONS

the case of MT (Giménez and Marquez 2007b; 2006; 2005a)r t@ers a common work-
bench on which automatic MT evaluation metrics can be medhiated, utilized and com-
bined on the basis of human likeness. It provides (i) a measuevaluate the quality of any
set of similarity metrics (KING), (ii) a measure to evalu#ite quality of a translation using
a set of similarity metrics (QUEEN), and (iii) a measure taleate the reliability of a test
bed (JACK). IQur allows also for evaluation and meta-evaluation on the bafdmiman ac-
ceptability. All metrics described in this work have beeodrporated into the 1@ package
which is released under LGPL liceise

SVMTool: The SVMTool is a simple and effective generator of sequetaggers based on Sup-
port Vector Machines (Giménez & Marquez, 2003; Giméneda&rquez, 2004b; Giménez &
Marguez, 2004a). We have applied the SVMTool to the prolbdémpart-of-speech tagging.
By means of a rigorous experimental evaluation, we conctbdethe proposed SVM-based
tagger is robust and flexible for feature modeling (inclgdiexicalization), trains efficiently
with almost no parameters to tune, and is able to tag thossaingdords per second, which
makes it really practical for real NLP applications. Regagdaccuracy, the SVM-based
tagger significantly outperforms the TnT tagger (Brant§)®Gxactly under the same con-
ditions, and achieves a very competitive accuracy of 97.@884&hglish on the Wall Street
Journal corpus, which is comparable to the best taggergtegpap to date. It has been
also successfully applied to Spanish and Catalan exhgbdirsimilar performance, and to
other tagging problems such as chunking. Perl and C++ vegsice publicly available under
LGPL licensé.

8.3 Future Work

This section describes future research work.

8.3.1 Extending the Evaluation Methodology

We have in mind several extensions to the methodology f@arbgéneous automatic MT evaluation
deployed in Chapter 3.

Metric Improvement

The set of metrics presented in Section 3.1 covers a wideerahguality aspects. However, the

fact of relying on automatic linguistic processors implias we have discussed, several limitations.
Some are derived from their performance —linguistic preces are prone to error and often very
slow. In order to improve the effectiveness and efficiencgwfent metrics, we plan to use newer
versions of current linguistic processors as they becoraitadle as well as to study the possibility

of shifting to alternative tools.

3The 1Qur software may be freely downloadedtp://www.lsi.upc.es/ ~nlp/IQMT/
“The SVMTool software may be freely downloadechtp://www.Isi.upc.es/ ~nlp/SVMTool/
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Another limitation of current metrics is that they are laaga dependent. In the short term, we
plan to adapt some of the metrics to languages other thansBroglunting on the required linguistic
processors (e.g., Arabic, Chinese). For instance, we arertly developing shallow-syntactic,
syntactic and shallow-semantic metrics for Spanish andl@at

We also plan to incorporate new metrics. This may involvengisiew linguistic processors
which are able to acquire new types of information, and aksighing new types of similarity
measures over currently available linguistic representat

Metric Combinations

We plan to perform a thorough comparison between paramstidaon-parametric metric combi-
nation schemes. The idea is to reproduce the parametrioagpes by Kulesza and Shieber (2004),
Albrecht and Hwa (2007a) and Liu and Gildea (2007) and to @mmphem to the combination
strategies described in Section 3.4, over different eti@nascenarios (i.e., language-pairs, task
domains, and system paradigms).

Heterogeneous Statistical Significance Tests

Statistical significance tests allow researchers to determhether the quality attained by a system
A over a fixed set of translations is higher, equal to, or lovantthe quality attained by another
systemB over the same set of translations (Koehn, 2004b; Collin ,€@05). Translation quality
is typically measured according to an automatic metric atcgh(e.g., BLEU), which causes the
test to be metric-biased. A more robust alternative, in qunion, would consist in performing
heterogeneous tests that would guarantee statisticdfisagite of the results simultaneously ac-
cording to a heterogeneous set of metrics operating ateliftdinguistic levels. For that purpose
we count on the QUEEN measure. As we have seen, QUEEN is alplisbh@ measure which,
based on the unanimity principle, provides an estimate @fiéliel of agreement among different
metrics on the quality of automatic outputs. Thus, its agplon to the problem of assessing the
statistical significance of translation results shouldfbeyinciple, straightforward. This hypothesis
must be theoretically and empirically validated.

Adjustment of Parameters

The computational cost of some linguistic metrics turngrthieto impractical for the system opti-
mization process, in which hundreds of different systenfigorations are tried. We plan to study
the applicability of these metrics in the near future.

Automatic Error Analysis

Error analysis is a crucial stage in the development of an Sitem. In order to accelerate this
process, we plan to refine the #Qinterface, currently in text format, so that it allows foresf and
elegant visual access from different viewpoints corredpanto the different dimensions of quality.
For instance, missing or partially translated elementddcappear highlighted in different colors.
Besides, evaluation measures generate, as a by-pass pydiactic and semantic analyses which
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could be displayed. This would allow users to separatelfyaadhe translation of different types of
linguistic elements (e.g., constituents, relationshgzgguments, adjuncts, discourse representation
structures, etc.).

Towards a Development Cycle without Human Intervention

Meta-evaluation on the basis of human likeness elimindtesaeed for human assessments from
the development cycle. Human labor is only required for threstruction of reference translations.
Moreover, as we have seen in Section 2.4, several approtzhesomatic MT evaluation without
using human references have been suggested (Quirk, 200dorGet al., 2005; Albrecht & Hwa,
2007b). We plan to study their applicability with the inteatdefinitely remove all human inter-
vention from the evaluation task. This could originate a mwvelopment cycle in which neither
human assessments nor human references would be required.

8.3.2 Improving the Empirical MT System

There are several natural improvements that should be ssitte

Linguistic Knowledge

In the development of our SMT system, we have limited to ugirigrmation up to the level of
shallow syntax. In future experiments we plan to use infaiomaat deeper linguistic levels (e.g.,
based on semantic roles).

Moreover, our current implementation of WordNet-based a@iorindependent translation mod-
els does not fully exploit the WordNet topology. It uses th€ Rl merely as a multilingual dictio-
nary, i.e., exploiting only the synonymy relationship. Hmgr, WordNet offers several other types
of relationships. The possibility of incorporating featsirbased on the WordNet topology (e.g.,
about domains, hyponymy/hypernymy and meronymy/holonyahgtionships, and conceptual dis-
tance) should be considered. This information could be ekmboited during the construction of
discriminative phrase translation models.

English-to-Spanish Lexical Selection

So far, we have only exploited our dedicated shallow symtatscriminative translation models for
the case of Spanish-to-English translation. However, Spas known to have a richer morphology
than English. Thus, the room for improvement for our modketsugd be larger when applied in the
reverse direction, i.e., English-to-Spanish. This hypsth must be verified.

Domain Adaptation

One of the strengths of our approach to lexical selectiomasit is able to model the source context,
and, thus, mitigate the effects of a biased lexical selacfldis property makes it specially suitable
for being applied to the problem of domain adaptation. A carapive study on the performance of
DPT models in a restricted domain vs. an open domain shoubdheucted.
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8.3.3 Towards a New System Architecture

As we have seen in Chapter 6, the integration of context-@wescriminative translation probabil-
ities into the SMT framework is problematic. First, the tygiefeatures under consideration has a
direct influence in the complexity of the decoder. For ins&anwe have not been able to incorporate
additional features from the target side (sentence undetieation) and from the correspondences
between source and target sides (i.e., alignments). Setogpite of achieving a higher classifica-
tion accuracy, discriminative predictions based on lo@htng may be not necessarily well suited
for being integrated in the target translation. We argug ifhphrase translation classifiers were
trained in the context of the global task their integraticowd be more robust and translation qual-
ity could further improve. Third, the cooperation betweéstdminative models and other models
(e.g., language model and additional translation modal¢he standard log-linear architecture is
poorly modeled. The relative importance of the featuresesgmted by each model is determined
through a simple process of global parameter adjustmengnwindeed, feature importance may
vary at more local levels (e.g., sentence, constituentas@imrole, etc.). Undoubtly, the possibility
of moving towards a new global empirical MT architecture he fashion, for instance, of those
suggested by Tillmann and Zhang (2006) or Liang et al. (26866uld be studied.

8.3.4 Other Directions
Different Languages

In this work, we have focused on the translation betweenigmgind Spanish, two Indo-European
languages which present a similar word order. In the futnesplan to move to new language pairs.
Apart from English and Spanish, we are interested as wellatal@n, Basque, French, German,
Chinese and Arabic. For instance, we have presented our P&&ns to the Arabic-to-English
Exercise of the 2008 NIST MT Evaluation CampaidEsparfia-Bonet, 2008). Results corroborate
the findings in Chapter 6.

Entity Translation

We participated in the the Automatic Content Extraction EAEntity Translation 2007 Evaluation
Campaigh, with an Arabic-to-English entity translation system (el et al., 2007). Our approach
to entity translation was fairly simple. We divided the tasto three separate subtasks: Named
Entity Recognition and Classification, Coreference Rd&woiy and Machine Translation, which
were approached independently. In the next editions, weldstudy the possibility of performing
a joint training of the three subsystems. This would alloes ¢intity translation system to eliminate
the noise which appears due to the interaction between medldieally, in order to train such a
system a parallel corpus with annotated named entitiesfe@nces, and correspondences between
them would be required. However, bootstrapping technigoesd be also applicable.

Moreover, we could use the DPT models described in Chapter &40 better exploit the
sentence context in which entities occur.

Shttp://www.nist.gov/speech/tests/mt/2008/
Shttp://www.nist.gov/speech/tests/ace/ace07/et/
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Hybrid MT

Recently, several approaches to hybridization of MT systbave been suggested (Simard et al.,
2007; Alegria et al., 2008). We plan to study the possibditbuilding hybrid approaches (e.g., sta-

tistical and rule-based). For instance, we have succésségroduced the experiments by Simard

et al. (2007) for the case of English-to-Spanish trangidbipusing our SMT system to post-edit the

output of theTranslendiunTule-based MT systefn In the short term, we plan to use DPT models
to improve the lexical selection of a Basque-Spanish ralged MT system (Alegria et al., 2005).

"http://www.translendium.com/
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Appendix A

Author’s Publications

In the following, we provide a full list of the publicationis work has contributed with. Each
reference is accompanied by a short abstract. Publicaiomgrouped according to the line of
research in reverse chronological order:

e MT Evaluation:

- [E10] On the Robustness of Linguistic Features for Automat MT Evaluation. Jesls
Giménez and Lluis Marquez. FProceedings of the Fourth EACL Workshop On Statis-
tical Machine Translation
Abstract: We present an empirical study on the behavior of a heteragsmeet of met-
rics based on linguistic analysis in the paradigmatic caspeech translation between
non-related languages (see Section 3.3).

- [E9] A Smorgasbord of Features for Automatic MT Evaluation. Jests Giménez and
Lluis Marquez. InProceedings of the Third ACL Workshop On Statistical Maghin
Translation
Abstract: This document describes the approach by the Empirical MTu@ it the
Technical University of Catalonia (UPC-LSI), for the shéitask on Automatic Evalu-
ation of Machine Translation at the ACL 2008 Third WorkshapSiatistical Machine
Translation.

- [E8] Towards Heterogeneous Automatic MT Error Analysis. Jesls Giménez and Lluis
Marquez. InProceedings of the The Sixth International Conference amguage Re-
sources and Evaluation (LREC’08) Marrakech, Morocco, 2008
Abstract: This work studies the viability of performing heterogens@utomatic MT
error analyses. Through a practical case study, we show hese tfeatures provide an
effective means of elaborating interpretable and detailédmatic reports of translation
quality (see Section 3.5).

- [E7] Heterogeneous Automatic MT Evaluation Through Non-Rarametric Metric Com-
binations. Jesls Giménez and Lluis MarquezPimceedings of the Third International
Joint Conference on Natural Language Processing (IJCNBR’OHyderabad, India,
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2008.

Abstract: We suggest a novel path towards heterogeneous automaticviiiadon
which involves considering metrics at different linguistimensions without having to
adjust their relative importance (see Section 3.4).

- [E6] Linguistic Features for Automatic Evaluation of Heterogeneous MT Systems
Jeslis Giménez and Lluis Marquez. Rroceedings of the ACL Workshop on Statisti-
cal Machine Translation (WMT’07)Prague, Czech Republic, 2007.
Abstract: We show that automatic metrics at deep linguistic levelstgsstic and shallow-
semantic) are able to produce more reliable rankings ofrbgé@eous systems than
metrics based on lexical similarities (see Sections 3.d)3aR).

- [E5] IQMT v 2.0. Technical Manual. Jesls GiménezResearch Report LSI-07-29-R.
TALP Research Center. LSI Departmertittp://www.Isi.upc.edu/ ~nlp/
IQMT/IQMT.v2.0.pdf
Abstract: This report presents a description and tutorial on ther lgackage for auto-
matic MT evaluation based on human likeness.

- [E4] Machine Translation System Development based on HunmalLikeness Patrik
Lambert, Jesls Giménez, Marta R. Costa-jussa, Enriguig@ Rafael E. Banchs, Lluis
Margquez and J.A. R. Fonollosa. Rroceedings of IEEE/ACL 2006 Workshop on Spo-
ken Language Technologlalm Beach, Aruba, 2007.

Abstract: We present a novel approach for parameter adjustment in Sfgt€ras by
working in metric combinations optimized on the basis of anrntikeness.

- [E3] MT Evaluation: Human-Like vs. Human Acceptable. Enrique Amigo, Jesls
Giménez, Julio Gonzalo and Lluis Marquez. Pmoceedings of the joint conference
of the International Committee on Computational Lingaistand the Association for
Computational Linguistics (COLING/ACL’20Q63ydney, Australia, 2006.

Abstract: We present a comparative study on the behaviour of humandds and
human acceptability as meta-evaluation criteria in théedrof MT evaluation.

- [E2] IQMT: A Framework for Automatic Machine Translation E valuation. Jesls
Giménez and Enrique Amig6. IRroceedings of the 5th International Conference on
Language Resources and Evaluation (LREC,@#@noa, Italy, 2006.

Abstract: We present the I Framework for Machine Translation Evaluation Inside
QARLA.

- [E1] Machine Translation Evaluation Inside QARLA . JesUs Giménez and Enrique Amigb
and Chiori Hori. InProceedings of the International Workshop on Spoken Laggua
Technology (IWSLT'05Pittsburgh, PA, 2005.

Abstract: Preliminary results on the application of the QARLA Framewt MT
evaluation are presented.

e Lexical Selection in SMT:

- [L4] Discriminative Phrase Selection for Statistical Madine Translation . Jests Giménez
and Lluis Marquez. To appear irearning Machine TranslatianNIPS Workshop se-
ries. MIT Press, 2008.
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Abstract: This work explores the application of discriminative leagto the problem
of phrase selection in Statistical Machine Translatior Section Chapter 6).

- [L3] Context-aware Discriminative Phrase Selection for $atistical Machine Trans-
lation. Jesls Giménez and Lluis Marquez. Rroceedings of the ACL Workshop on
Statistical Machine Translation (WMT'07Prague, Czech Republic, 2007.

Abstract: In this work we revise the application of discriminativereag to the prob-
lem of phrase selection in Statistical Machine Translats@e Chapter 6).

- [L2] The LDV-COMBO system for SMT . Jests Giménez and Lluis Marquez. Rro-
ceedings of the NAACL Workshop on Statistical Machine Taéioa (WMT’'06) New
York City, 2006.

Abstract: We describe the LDV-COMBO system presented at the Shardddfabe
NAACL'06 MT Workshop.

- [L1] Combining Linguistic Data Views for Phrase-based SMT. JeslUs Giménez and Lluis
Marquez. InProceedings of the ACL Workshop on Building and Using Pardlexts
Ann Arbor, MlI, 2005.
Abstract: We explore the possibility of working with alignments atfdient levels
of abstraction, using different degrees of linguistic aation at the level of shallow
parsing. We also investigate alternative methods so asnibic@ different translation
models built out from different linguistic data views (sekapter 5).

e Domain-Dependence in SMT:

- [D4] Enriching Statistical Translation Models Using a Domain-Independent Multilin-
gual Lexical Knowledge Base Miguel Garcia, Jests Giménez, and Lluis Marquez.
In Proceedings of the 10th International Conference on ligtelit Text Processing and
Computational Linguistics (CICLing 2009\Mexico City, Mexico, 2009. (Best Student
Paper Award)
Abstract: We present a method for improving phrase-based SMT systgresiich-
ing the original translation model with information demv&om a multilingual lexical
knowledge base.

- [D3] The UPC System for Arabic-to-English Entity Translation. David Farwell, Jesus
Giménez, Edgar Gonzalez, Reda Halkoum, Horacio Rodd@nd Mihai Surdeanu.
In Proceedings of the Automatic Content Extraction Evaluafsogram (ACE 2007)
University of Maryland, MD, 2007.
Abstract: We describe the UPC Arabic-to-English Entity Translatigist8m presented
at the ACE/ET 2007 Evaluation Campaign, and its applicaitiotie Arabic-to-English
Entity Translation task.

- [D2] Low-cost Enrichment of Spanish WordNet with Automatically Translated Glosses:
Combining General and Specialized ModelsJests Giménez and Lluis Marquez. In
Proceedings of the joint conference of the Internationahf@uttee on Computational
Linguistics and the Association for Computational Lingies (COLING/ACL’2006)
Sydney, Australia, 2006.
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Abstract: We study the enrichment of Spanish WordNet with synset glbssitomat-
ically obtained from the English WordNet glosses using apbfbased Statistical Ma-
chine Translation system trained on data sources fromrdifftedomains (see Chapter
7).

- [D1] Automatic Translation of WordNet Glosses Jesls Giménez and Lluis Marquez and
German Rigau. IrProceedings of Cross-Language Knowledge Induction Worksh
EUROLAN Summer School, 20@5luj-Napoca, Romania, 2005.

Abstract: We present preliminary results on the automatic transiatibthe glosses
in the English WordNet. We intend to generate a preliminagtamal which could be
utilized to enrich other wordnets lacking of glosses (seapfdr 7).

We also provide a list of other publications by the authorchibire not directly related to the
work presented in this book:

e Development of NLP Tools:

- [T4] Semantic Role Labeling as Sequential TagginglLluis Marquez, Pere Comas, Jesls
Giménez and Neus Catala. Rroceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL), 200Bnn Arbor, Ml, 2005.

Abstract: We describe the Semantic Role Labeling system presentduet@oNLL
2005 shared task.

- [T3] SVMTool: A general POS tagger generator based on Suppt Vector Machines.
Jeslis Giménez and Lluis Marquez.Froceedings of the 4th International Conference
on Language Resources and Evaluation (LREC'04). |, pages 43 - 46. Lisbon, Por-
tugal, 2004.

Abstract: This paper presents SVMTool, a simple, flexible, effectivel @fficient
part—of-speech tagger based on Support Vector MachinesM T4l offers a fairly
good balance among these properties which make it realgtipghfor current NLP ap-
plications. SVMTool may be freely downloadedhdtp://www.Isi.upc.edu/
~nlp/SVMTool

- [T2] SVMTool: A general POS tagger generator based on Suppb Vector Machines
(Technical Manual). JeslUs Giménez and Lluis MarqudzS| Departament Research
Report (LSI-04-34-R), Technical University of Catalqr@04.

Abstract: This report is a detailed technical manual for the SVMTool.

- [T1] Fast and Accurate Part-of-Speech Tagging: The SVM Appoach Revisited JesUs
Giménez and Lluis Marquez. Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP'@2)ges 158 - 165. Borovets,
Bulgary, 2003. Selected as a chapter in volume 260 of ClLleséCurrent Issues in
Linguistic Theory). John Benjamins Publishers, Amsterdam
Abstract: In this paper we present a very simple and effective pasgpefech tagger
based on Support Vector Machines (SVM). Simplicity and &fficy are achieved by
working with linear separators in the primal formulationS3/M, and by using a greedy
left-to-right tagging scheme. As a result, we developedIié/Tool.
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e Generation of MT Resources:

- [G8] LC-STAR: XML-coded Phonetic Lexica and Bilingual Corpora for Speech-to-
Speech Translation Folkert de Vriend, Naria Castell, Jesis Giménez andiGiu
Maltese. InProceedings of the Papillon Workshop on Multilingual LexiDatabases
Grenoble, France, 2004.

Abstract: This paper describes XML encoding of lexica and multilinige@pora and
their validation in the framework of the LC-STAR project.

- [G7] Bilingual Connections for Trilingual Corpora: An XML Approach. Victoria Ar-
ranz, Ndria Castell, Josep Maria Crego, JeslUs GiméndraAle Gispert and Patrik
Lambert. InProceedings of the 4th International Conference on Languagsources
and Evaluation (LREC’04)ol. 1V, pages 1459 - 1462. Lisbon, Portugal, 2004.
Abstract: An XML representation for a trilingual spontaneous speamipuas for statis-
tical speech-to-speech translation is suggested.

- [G6] Creaci6 de recursos lingiistics per a la traduccb automatica. Victoria Arranz,
Ndria Castell i Jesis Giménez. #n Congés d’Enginyeria en Llengua Catalana
(CELC’04). Andorra, 2004. (presented also in Il JornadasTecnologia del Habla.
Valencia, Spain. 2004.)

Abstract: Creation of lexica and corpora for Catalan, Spanish and bdigh is de-
scribed.

- [G5] Development of Language Resources for Speech-to-Symh Translation. Victoria
Arranz, Naria Castell and Jests GiménezPhoceedings of the International Confer-
ence on Recent Advances in Natural Language Processingl(RAB), pages 26-30.
Borovets, Bulgary, 2003.

Abstract: This paper describes the design and development of a trdirgpontaneous
speech corpus for statistical speech-to-speech tramslati

- [G4] Lexica and Corpora for Speech-to-Speech translation A Trilingual Approach .
David Conejero, JesUs Giménez, Victoria Arranz, AntoBanafonte, Neus Pascual,
Nuria Castell and Asuncion Moreno. Rroceedings of the 8th European Conference
on Speech Communication and Technology (EuroSpeech.2@@3)eva, Switzerland,
2003.

Abstract: Creation of lexica and corpora for Catalan, Spanish and b@igh is de-
scribed.

- [G3] Description of Language Resources Used for Experimes. Victoria Arranz, NQria
Castell, Jests Giménez, Hermann Ney and Nicola Ueffireghnical Report Deliver-
able D4.2, LC-STAR project by the European Community (18Jegtr ref. No. 2001-
32216) 2003.

Abstract: This documents describes the language resources used finsthexperi-

ments as well as the experiments themselves, in the framieeof €-STAR project.
These experiments are described in detail, providing mé&tion on both acquisition
and expansion of already existing language resources.
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- [G2] Description of Raw Corpora. Victoria Arranz, Naria Castell, Jests Giménez and
Asuncion Moreno. Technical Report Deliverable 5.3, LC-STAR project by theoEu
pean Community (IST project ref. No. 2001-32216)03.

Abstract: Creation of lexica and corpora for Catalan, Spanish and b§igh is de-
scribed.

- [G1] Speech Corpora Creation for Tourist Domain. Victoria Arranz, Nlria Castell and
JesUs Giménez.SI Department Technical Report (LSI-03-2-T), TechnicaiMdrsity of
Cataloniag 2003.

Abstract: Creation of lexica and corpora for Catalan, Spanish and b@igh is de-
scribed.

All papers are publicly available dittp://www.Isi.upc.edu/ ~jgimenez/pubs.
html .



Appendix B

Linguistic Processors and Tag Sets

B.1 Shallow Syntactic Parsing

Shallow parsing is performed using several state-of-thperformance tools.

B.1.1 Part-of-speech Tagging

PoS and lemma annotation is automatically provided by théM$vol (Giménez & Marquez,
2004a; Giménez & Marquez, 2004b)We use the Freeling (Carreras et al., 26Qgackage only
for lemmatization.

English

The SVMTool for English has been trained on the Wall Streetrdal (WSJ) corpus (1,173K
words). Sections 0-18 were used for training (912K word8}21 for validation (131K words),
and 22-24 for test (129K words), respectively. 2.81% of tloeds in the test set are unknown to the
training set. Best other results so far reported on this dasteset are (Collins, 2002) (97.11%) and
(Toutanova et al., 2003) (97.24%). Table B.1 shows the SVM performance as compared to the
TnT tagger. ‘known’ and ‘unk. refer to the subsets of knowrdainknown words, respectively.
‘amb’ refers to the set of ambiguous known words and ‘all’he bverall accuracy.

| known [ amb. | unk. | all. |

TnT 96.76% | 92.16% | 85.86%| 96.46%
SVMTool | 97.39% | 93.91% | 89.01%| 97.16%

Table B.1: Performance of the SVMTool for English on the W&jpas

Table B.2 and Table B.3 show the PoS tag set for English, efrom the Penn Treebahtag
set (Marcus et al., 1993). Several coarse classes are @uclud

http://www.lsi.upc.es/ ~nlp/SVMTool/
2http://www.Isi.upc.es/ ~nlp/freeling/
3http://www.cis.upenn.edu/ ~treebank/
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Type | Description

CC Coordinating conjunction, e.g., and,but,or...

CD Cardinal Number

DT Determiner

EX Existential there

FW Foreign Word

IN Preposition or subordinating conjunction

JJ Adjective

JIR Adjective, comparative

JJS Adjective, superlative

LS List Item Marker

MD Modal, e.g., can, could, might, may...

NN Noun, singular or mass

NNP | Proper Noun, singular

NNPS | Proper Noun, plural

NNS | Noun, plural

PDT | Predeterminer, e.g., all, both ... when they precede arlarti
POS | Possessive Ending, e.g., Nouns ending in's

PRP | Personal Pronoun, e.g., |, me, you, he...

PRP$ | Possessive Pronoun, e.g., my, your, mine, yours...

RB Adverb. Most words that end in -ly as well as degree words
like quite, too and very.

RBR | Adverb. comparative Adverbs with the comparative endimg -e
with a strictly comparative meaning.

RBS | Adverb, superlative

RP Particle

SYM | Symbol. Should be used for mathematical, scientific or teehisymbols
TO to

UH Interjection, e.g., uh, well, yes, my...

Table B.2: PoS tag set for English (1/2)
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Type | Description
VB Verb, base form subsumes imperatives, infinitives and swchiyes
VBD | Verb, past tense includes the conditional form of the veiteto
VBG | Verb, gerund or present participle
VBN | Verb, past participle
VBP | Verb, non-3rd person singular present
VBZ | Verb, 3rd person singular present
WDT | Wh-determiner, e.g., which, and that when it is used as &velpronoun
WP | Wh-pronoun, e.g., what, who, whom...
WP$ | Possessive wh-pronoun
WRB | Wh-adverb, e.g., how, where why
#
$
(
) Punctuation Tags
COARSE TAGS
N Nouns
\% Verbs
J Adjectives
R Adverbs
P Pronouns
w Wh- pronouns
F Punctuation

Table B.3: PoS tag set for English (2/2)
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Spanish

The SVMTool for Spanish has been trained on the 3L&rpus (75K words). It was randomly
divided into training set (59K words) and test set (16K wrds3.65% of the words in the test set
are unknown to the training set. See results in Table B.4.

|known| amb. | unk. | all. |

™nT 97.73%| 93.70% | 87.66%| 96.50%
SVMTool | 98.08% | 95.04% | 88.28%| 96.89%

Table B.4: Performance of the SVMTool for Spanish on the 3bBas

Tag set for Spanish, derived from the PAROLE tag set, is shiowirable B.5, Table B.6 and
Table B.7.

B.1.2 Lemmatization

Word lemmas have been obtained by matching word-PoS pagissigwo lemmaries available
inside the Freeling package. The English lemmary contanmsrias for 185,201 different word-
PoS pairs, whereas the Spanish lemmary contains lemma®28,365 word-PoS pairs.

B.1.3 Chunking

Partial parsing information (i.e., base phrase chunkshpiained using the Phreco software based
on global on-line learning via the Perceptron algorithmr(@as et al., 2005).

English

English models have been trained on the Penn Treebank (3@d#syv We randomly split data

into train (211,727 words), development (47,377 words)tastl(40,039 words). Best performance
(F1 = 93.72%) was obtained using averaged perceptrons up tdhehodable B.8 shows phrase
chunking tag sets for English.

Spanish

Models for Spanish have been trained on the 3LB corpus (95tsyprandomly split into training
(76,115 words) and test (18,792 words). Best performait¢e=(94.55%) was obtained using
regular perceptrons after epoch 20. Table B.9 shows phhas&ing tag sets for Spanish.

“The 3LB project is funded by the Spanish Ministry of Scienod dechnology (FIT-15050-2002-244), visit the
project website afittp://www.dlsi.ua.es/projectes/3lb/



B.1. SHALLOW SYNTACTIC PARSING

Type | Description
NOUN
NC Noun, Common
NP Noun, Proper
VERB
VAG Verb, Auxiliary, Gerund
VAI Verb, Auxiliary, Indicative
VAM | Verb, Auxiliary, Imperative
VAN Verb, Auxiliary, Infinitive
VAP | Verb, Auxiliary, Participle
VAS Verb, Auxiliary, Subjunctive
VMG | Verb, Main, Gerund
VMI Verb, Main, Indicative
VMM | Verb, Main, Imperative
VMN | Verb, Main, Infinitive
VMP | Verb, Main, Patrticiple
VMS | Verb, Main, Subjunctive
VSG | Verb, Semi-Auxiliary, Gerund
VSI Verb, Semi-Auxiliary, Indicative
VSM | Verb, Semi-Auxiliary, Imperative
VSN | Verb, Semi-Auxiliary, Infinitive
VSP | Verb, Semi-Auxiliary, Participle
VSS | Verb, Semi-Auxiliary, Subjunctive
ADJECTIVE
AO Adjective, Ordinal
AQ Adjective, Qualifier
AQP | Adjective, Qualifier and Past Particip
ADVERB
RG Adverb, General
RN Adverb, Negative
PRONOUN
PO Pronoun, Clitic
PD Pronoun, Demonstrative
PE Pronoun, Exclamatory
Pl Pronoun, Indefinite
PN Pronoun, Numeral
PP Pronoun, Personal
PR Pronoun, Relative
PT Pronoun, Interrogative
PX Pronoun, Possessive

Table B.5: PoS tag set for Spanish and Catalan (1/3)
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Type | Description
ADPOSITON
SP | Adposition, Preposition
CONJUNCTION
CC | Conjunction, Coordinate
CS Conjunction, Subordinative
DETERMINER
DA Determiner, Article
DD Determiner, Demonstrative
DE Determiner, Exclamatory
DI Determiner, Indefinite
DN Determiner, Numeral
DP Determiner, Possessive
DT Determiner, Interrogative
INTERJECTION
[ | Interjection
DATE TIMES
W | Date Times
UNKNOWN
X | Unknown
ABBREVIATION
Y | Abbreviation
NUMBERS
Z Figures
Zm Currency
Zp Percentage

Table B.6: PoS tag set for Spanish and Catalan (2/3)
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e

Type | Description
PUNCTUATION

Faa | Fat Punctuation, !

Fc Punctuation, ,

Fd Punctuation, :

Fe Punctuation, “

Fg Punctuation, -

Fh Punctuation, /

Fia Punctuation,

Fit Punctuation, ?

Fp Punctuation, .

Fpa | Punctuation, (

Fpt | Punctuation, )

Fs Punctuation, ...

Fx Punctuation, ;

Fz Punctuation, other than thos
COARSE TAGS

A Adjectives

C Conjunctions

D Determiners

F Punctuation

I Interjections

N Nouns

P Pronouns

S Adpositions

\Y Verbs

VA Auxiliary Verbs

VS Semi-Auxiliary Verbs

VM Main Verbs

Table B.7: PoS tag set for Spanish and Catalan (3/3)
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Type Description
ADJP | Adjective phrase
ADVP | Adverb phrase
CONJP| Conjunction

INTJ Interjection
LST List marker
NP Noun phrase
PP Preposition

PRT Particle

SBAR | Subordinated Clause
UCP Unlike Coordinated phras
VP Verb phrase

(0] Not-A-Phrase

1]

Table B.8: Base phrase chunking tag set for English

Type Description
ADJP Adjective phrase
ADVP Adverb phrase
CONJP | Conjunction

INTJ Interjection

NP Noun phrase

PP Preposition

SBAR Subordinated Clause
VP Verb phrase

AVP Adjectival verb phrase

NEG Negation
MORFV | Verbal morpheme
@] Not-A-Phrase

Table B.9: Base phrase chunking tag set for Spanish andgbatal
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B.2 Syntactic Parsing

Dependency parsing for English is performed using Mi8lIPAR® parser (Lin, 1998). A brief
description of grammatical categories and relations mapised in Table B.10 and Table B.11.

Constituency parsing for English is performed using ther@h&-Johnson’s Max-Ent reranking
parser (Charniak & Johnson, 2085)A description of the tag set employed is available in Table
B.12.

B.3 Shallow Semantic Parsing

Named entities are automatically annotated using the BlOi& 8f Syntactico-Semantic Analyz-
ers (Surdeanu et al., 2005)The list of NE types utilized is available in Table B.13.

Semantic role labeling is performed using the SwiRL SengaRtle Labeler (Surdeanu &
Turmo, 2005; Marquez et al., 2065)A list of SR types is available in Table B.14.

B.4 Semantic Parsing

Semantic parsing is performed using the BOXER componerg,(Ba05) available inside the C&C
Tools (Clark & Curran, 2004) BOXER elaborates DRS representations of input senterarsgg
on the basis of a Combinatory Categorial Grammar (CCG) péBses et al., 2004).

There are two types of DRS conditions:

basic conditions: one-place properties (predicates), two-place prope(tedations), named enti-
ties, time expressions, cardinal expressions and easaliti

complex conditions: disjunction, implication, negation, question, and propmsal attitude oper-
ations.

Tables B.15 to B.19 describe some aspects of the DRS repaéises utilized. For instance,
Tables B.15 and B.16 respectively show basic and complex @R#8itions. Table B.17 shows DRS
subtypes. Tables B.18 and B.19 show symbols for one-plagtévamplace relations.

Shttp://www.cs.ualberta.ca/ ~lindek/minipar.htm
Sftp://ftp.cs.brown.edu/pub/niparser/
"http://www.surdeanu.name/mihai/bios/
8http://www.surdeanu.name/mihai/swirl/
®http://svn.ask.it.usyd.edu.au/trac/candc



212 APPENDIX B. LINGUISTIC PROCESSORS AND TAG SETS

Type Description

Det Determiners
PreDet | Pre-determiners
PostDet| Post-determiners
NUM numbers

C Clauses

I Inflectional Phrases

\% Verb and Verb Phrases

N Noun and Noun Phrases

NN noun-noun modifiers

P Preposition and Preposition Phrases
PpSpec| Specifiers of Preposition Phrases

A Adjective/Adverbs

Have verb ‘to have’

Aux Auxiliary verbs, e.g. should, will, does, ...
Be Different forms of verb ‘to be’: is, am, were, be, ...

COMP | Complementizer
VBE ‘to be’ used as a linking verb. E.g., | am hungry

V_N verbs with one argument (the subject), i.e., intransitiegs
V_N_N | verbs with two arguments, i.e., transitive verbs
V_N_I verbs taking small clause as complement

Table B.10: Grammatical categories provided by MINIPAR
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Type Description

appo “ACME president, —appe> P.W. Buckman”

aux “should <- aux— resign”

be “is <- be— sleeping”

by-subj subject with passives

C clausal complement “that- c— John loves Mary”
cn nominalized clause

compl first complement

desc description

det “the <- det ‘- hat”

gen “Jane’s<- gen— uncle”

fc finite complement

have “have <- have— disappeared”

i relationship between a C clause and its | clause
inv-aux inverted auxiliary: “Will <- inv-aux— you stop it?”
inv-be inverted be: “Is<- inv-be— she sleeping”
inv-have inverted have: “Have&- inv-have— you slept”
mod relationship between a word and its adjunct modifier
pnmod post nominal modifier

p-spec specifier of prepositional phrases

pcomp-c clausal complement of prepositions

pcomp-n nominal complement of prepositions

post post determiner

pre pre determiner

pred predicate of a clause

rel relative clause

obj object of verbs

obj2 second object of ditransitive verbs

s surface subject

sc sentential complement

subj subject of verbs

vrel passive verb modifier of nouns

wha, whn, whp| wh-elements at C-spec positionsn(a)

Table B.11: Grammatical relationships provided by MINIPAR
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Type Description

Clause Level
S Simple declarative clause
SBAR Clause introduced by a (possibly empty) subordinatingwaetjon
SBARQ | Direct question introduced by a wh-word or a wh-phrase

SINV Inverted declarative sentence, i.e. one in which the stufipdows
the tensed verb or modal
SQ Inverted yes/no question, or main clause of a wh-questalowing

the wh-phrase in SBARQ
Phrase Level

ADJP Adjective Phrase
ADVP Adverb Phrase
CONJP | Conjunction Phrase
FRAG Fragment

INTJ Interjection

LST List marker

NAC Not a Constituent; used to show the scope of certain preradmmndifiers
within a NP

NP Noun Phrase

NX Used within certain complex NPs to mark the head of the NP

PP Prepositional Phrase

PRN Parenthetical

PRT Particle. Category for words that should be tagged RP

QP Quantifier Phrase (i.e. complex measure/amount phrassj;wishin NP

RRC Reduced Relative Clause

UCP Unlike Coordinated Phrase

VP Verb Phrase

WHADJP | Wh-adjective Phrase

WHAVP | Wh-adverb Phrase

WHNP Wh-noun Phrase

WHPP Wh-prepositional Phrase

X Unknown, uncertain, or unbracketable

Table B.12: Clause/phrase level tag set for English



B.4. SEMANTIC PARSING

Type Description

ORG Organization

PER Person

LOC Location

MISC Miscellaneous

@) Not-A-NE

DATE Temporal expressions
NUM Numerical expression

|2}

ANGLE_QUANTITY
DISTANCE.QUANTITY
SIZE.QUANTITY
SPEEDQUANTITY
TEMPERATUREQUANTITY
WEIGHT_QUANTITY

Quantities

METHOD
MONEY
LANGUAGE
PERCENT
PROJECT
SYSTEM

Other

Table B.13: Named Entity types
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Type Description

A0

Al

A2 arguments associated with a verb predicate,
A3 defined in the PropBank Frames scheme.
A4

A5

AA Causative agent

AM-ADV | Adverbial (general-purpose) adjunct
AM-CAU | Causal adjunct

AM-DIR Directional adjunct

AM-DIS Discourse marker

AM-EXT | Extent adjunct

AM-LOC | Locative adjunct

AM-MNR | Manner adjunct

AM-MOD | Modal adjunct

AM-NEG | Negation marker

AM-PNC | Purpose and reason adjunct
AM-PRD | Predication adjunct
AM-REC | Reciprocal adjunct
AM-TMP | Temporal adjunct

Table B.14: Semantic Roles

Type | Description
pred one-place properties (predicates)
rel two-place properties (relations)
named| named entities

timex | time expressions

card cardinal expressions

eq equalities

Table B.15: Discourse Representation Structures. BasB-Béhditions

Type | Description

or disjunction

imp | implication

not negation

whq | question

prop | propositional attitude

Table B.16: Discourse Representation Structures. ConipR&-conditions



B.4. SEMANTIC PARSING

Type | Description
Types of anaphoric information
pro | anaphoric pronoun
def | definite description
nam | proper name
ref reflexive pronoun
dei deictic pronoun
Part-of-speech type

n noun
% verb
a adjective/adverb

Named Entity types
org organization

per | person

ttl title

quo | quoted

loc location

fst first name

sur | surname

url URL

ema | email

nam | name (when type is unknown)
Cardinality type
eq equal

le less or equal

ge greater or equal

Table B.17: Discourse Representation Structures. Subtype
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Type Description

topic,a,n elliptical noun phrases

thing,n,12 used in NP quantifiers: 'something’, etc.)
person,n,1 used in first-person pronouns, 'who’-questior]
event,n,1 introduced by main verbs)

group,n,1 used for plural descriptions)

reason,n,2 used in 'why’-questions)

manner,n,2 used in ’how’-questions)

proposition,n,1
unit.of_time,n,1
location,n,1
quantity,n,1
amount,n,3
degree,n,1
age,n,1
neuter,a,0
male,a,0
female,a,0
base,v,2
bear,v,2

arguments of propositional complement verb
used in 'when’-questions)

used in 'there’ insertion, 'where’-questions)
used in ’how many’)

used in "how much’)

used in third-person pronouns: it, its)
used in third-person pronouns: he, his, him)
used in third-person pronouns: she, her)

s)

Table B.18: Discourse Representation. Symbols for oneeppeedicates used in basic DRS condi-

tions

Type Description

rel,0 general, underspecified type of relation
loc_rel,0 | locative relation

role,0 underspecified role: agent,patient,theme
member,0| used for plural descriptions

agent,0 | subject

theme,0 | indirect object

patient,0 | semantic object, subject of passive verbs

Table B.19: Discourse Representation. Symbols for twoeplalations used in basic DRS condi-

tions



Appendix C

Metric Sets

1-WER  ={
1-PER  ={
1-TER  ={
BLEU ={
GTM ={
METEOR ={
NIST ={
ROUGE  ={
LEX ={

1-WER }

1-PER }

1-TER }

BLEU-1, BLEU-2, BLEU-3, BLEU-4, BLEUI-2, BLEUI-3, BLEUi-4 }
GTM-1, GTM-2, GTM-3 }

METEOR.zact; METEOR tern, METEOR stm: METEOR sy }

NIST-1, NIST-2, NIST-3, NIST-4, NIST-5, NISTi-2, NISTi-3\ISTi-4,
NISTi-5 }

ROUGE-1, ROUGE-2, ROUGE-3, ROUGE-4, ROUGE
ROUGE;,, ROUGE;,, ROUGEy, }

1-PER, 1-WER, 1-TER, BLEU-1, BLEU-2, BLEU-3, BLEU-4,
BLEUI-2, BLEUI-3, BLEUi-4, GTM-1, GTM-2, GTM-3, NIST-1,
NIST-2, NIST-3, NIST-4, NIST-5, NISTi-2, NISTi-3, NISTi;4
NISTi-5, ROUGE-1, ROUGE-2, ROUGE-3, ROUGE-4,
ROUGE;, ROUGE;,, ROUGEs,, ROUGEy,

METEOR.zacts METEOR ¢, METEOR i, METEOR peyn  }

Table C.1: Metrics at the Lécal Level
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SP={ SP-NIST-1, SP-NIST-2, SP-NIST-3, SP-NIST-4, SP-NIST-5,
SP-NISTi-2, SP-NISTi-3, SP-NISTi-4, SP-NISTi-5, SP-NIST,;-1,
SP-NIST,5-2, SP-NIST,-3, SP-NIST,;-4, SP-NIST,;-5, SP-NISTj,-2,
SP-NISTiy-3, SP-NISTj,4-4, SP-NISTj,-5, SP-NIST-1, SP-NIST-2,
SP-NIST-3, SP-NIST-4, SP-NIST-5, SP-NISTj-2, SP-NIST-3,
SP-NISTj-4, SP-NIST}-5, SPO.-*, SPO,-ADJP, SPO,.-ADVP,
SP-0,-CONJP, SRO,-INTJ, SPO,-LST,

SP-O,-NP, SPO,-0, SPO,-PP, SPO,-PRT,
SP-O,-SBAR, SPO,-UCP, SPO,-VP, SPO,-#,

SP0,-$, SPO,-", SP-O,-(, SPO,-), SPO,-*,

SPO,-, , SPO,-., SPO,-1, SPO,-CC, SPO,-CD,
SP0,-DT, SPO,-EX, SPO,-F, SPO,-FW, SPO,-IN,
SP0,-J, SPO,-JJ, SPO,-JJR, SPO,-1JS, SRO,-LS,
SP-0,-MD, SP-0,-N, SPO,-NN, SPO,-NNP,
SP-0,-NNPS, SPO,-NNS, SPO,-P, SPO,-PDT,
SP0,-POS, SPO,-PRP, SP9,-PRP$, SR9,-R,
SP0,-RB, SPO,-RBR, SPO,-RBS, SPO,-RP,
SP-0,-SYM, SPO,-TO, SPO,-UH, SPO,-V,
SP0,-VB, SP-0,-VBD, SP-0,-VBG, SPO,-VBN,
SP-0,-VBP, SPO,-VBZ, SP-0O,-W, SPO,-WDT,
SP0,-WP, SPO,-WP$, SPO,-WRB, SPO,-*,
SP-NIST,-1, SP-NIST-2, SP-NIST-3, SP-NIST-4, SP-NIST,-5,
SP-NIST}-2, SP-NIST}-3, SP-NISTj-4, SP-NISTj-5 }

Table C.2: Metrics based orh&llow Parsing
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DP={ DP-O.-%, DP-O..a, DPO, as, DPO. aux, DPO. be, DPO, _c,
DP-O._comp, DPO._det, DPO._have, DPO._n, DP-O._postdet,
DP-O._ppspec DR, _predet, DPO,._saidx, DPO,_sentadjunct, DR>._subj,
DP-O._that, DPO._prep, DPO._u, DP-O._v, DP-O._.vbe, DPO_._xsaid,
DP-HWC.-1, DP-HWGC-2, DP-HWGC-3, DP-HWGC-4, DP-HWGC--1,
DP-HWC,-2, DP-HWG.-3, DP-HWGC.-4, DP-HWGC,-1, DP-HWGC,-2,
DP-HWC,-3, DP-HWGC,-4, DP-HWC|.-2, DP-HWC|.-3, DP-HWCj.-4,
DP-HWCi.-2, DP-HWC}.-3, DP-HWCi.-4, DP-HWCij,-2, DP-HWC|,-3,
DP-HWCiy,-4, DP-O;-x, DP-0O;_1, DP-O;_2, DP-0;_3, DP-O;_4, DP-O,_5,
DP-0O,_6, DP-O;_7, DP-0;_8, DP-0;.9, DP-O,-x, DP-O,_amod,
DP-O,_amount-value, DR?,_appo, DPO, _appo-mod, DR9, _as-arg,
DP-O,_asl, DPO,_as2, DPO,._aux, DPO, _be, DPO, _being,
DP-O,._by-subj, DPO,._c, DP-O,._cn, DP©O,_compl, DPO, _conj, DPO, _desc,
DP-O, _dest, DPO, _det, DPO, _else, DPO, _fc, DP-O,._gen, DPO, _guest,
DP-O,_have, DPO, _head, DPO,._i, DP-O,._inv-aux, DPO, _inv-have,
DP-O, _lex-dep, DPO, _lex-mod, DPO,._mod, DPO,._mod-before, DR2,._neg,
DP-O,._nn, DPO,._.num, DPO,_num-mod, DPO,._obj, DP-O,._objl1, DPO,._obj2,
DP-O, _p, DP-O, _p-spec, DR9,._pcomp-c, DPO,._pcomp-n, DPO, _person,
DP-O,_pnmod, DPO, _poss, DPO, _post, DPO,._pre, DPO,. _pred, DPO, punc,
DP-O,_rel, DPO,._s, DPO, _sc, DPO, _subcat, DP9, _subclass,
DP-O,_subj, DPO,. title, DP-O, vrel, DP-O,_wha, DPO,._whn, DPO, whp }

Table C.3: Metrics based ondpendency &sing
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CP={ CP-O. *, CP-O.-ADJP, CPO.-ADVP, CP-O.-CONJP, CPO.-FRAG, CPO -INTJ,

CP-O,-LST, CPO,-NAC, CP-O,-NP, CPO,-NX, CP-0.-O, CPO,-PP, CPO,-PRN,
CP-O,-PRT, CPO,-QP, CPO.-RRC, CPO,-S, CPO.-SBAR, CPO,-SINV,
CP-0,-SQ, CPO,-UCP, CPO,-VP, CPO,-WHADJP, CPO,-WHADVP,
CP-O,-WHNP, CPO.-WHPP, CPO,-X, CP-O,-#, CPO,-$, CPO,-", CP-O,(,
CP-0,-), CP-Op-%, CP-0,-,, CPO,-., CPO,-;, CP-0,-CC, CPO,-CD, CPO,-DT,
CP-0,-EX, CP-O,-F, CPO,-FW, CPO,-IN, CP-0,-J, CPO,-JJ, CPO,-JJR,
CP-0,-1JS, CPO,-LS, CPO,-MD, CP-0,-N, CP-0,-NN, CP-O,-NNP, CPO,-NNPS,
CP-0,-NNS, CPO,-P, CPO,-PDT, CPO,-POS, CPO,-PRP, CPO,-PRP$,
CP-0,-R, CPO,-RB, CPO,-RBR, CPO,-RBS, CPO,-RP, CPO,-SYM,

CP-0,-TO, CPO,-UH, CP-0,-V, CP-0,-VB, CP-0,-VBD, CP-0,-VBG,
CP-0,-VBN, CP-0,-VBP, CPO,-VBZ, CP-O,-W, CP-0,-WDT, CP-O,-WP,
CP-0,-WP$, CPO,-WRB, CPO,-*, CP-STM-1, CP-STM-2, CP-STM-3, CP-STM-4,
CP-STM-5, CP-STM-6, CP-STM-7, CP-STM-8, CP-STM-9, CP-ST}ICP-STMi-3,
CP-STMi-4, CP-STMi-5, CP-STMi-6, CP-STMi-7, CP-STMi-8P&STMi-9  }

Table C.4: Metrics based ono@stituency Brsing

NE ={ NE-M.-*, NE-M.-ANGLE_QUANTITY, NE-M.-DATE,

NE-M.-DISTANCE.QUANTITY, NE-M.-LANGUAGE,
NE-M.-LOC, NE-M.-METHOD, NE-M.-MISC,
NE-M.-MONEY, NE-M.-NUM, NE-M.-ORG, NE4/.-PER,
NE-M.-PERCENT, NEA.-PROJECT, NEAZ.-SIZE QUANTITY,
NE-M.-SPEEDQUANTITY, NE-M.-SYSTEM,
NE-M.-TEMPERATUREQUANTITY, NE-M.-WEIGHT_QUANTITY,
NE-Oc-*, NE-Og-%%, NE-O.-ANGLE_QUANTITY,

NE-O.-DATE, NE-O.-DISTANCE.QUANTITY,
NE-O.-LANGUAGE, NE-O.-LOC, NE-O.-METHOD,
NE-O.-MISC, NE-O.-MONEY, NE-O.-NUM,

NE-O.-O, NE-O.-ORG, NEO.-PER,

NE-O.-PERCENT, NEO.-PROJECT,

NE-O.-SIZE_.QUANTITY, NE-O.-SPEEDQUANTITY,
NE-O.-SYSTEM, NEO.-TEMPERATUREQUANTITY,
NE-O.-WEIGHT_QUANTITY }

Table C.5: Metrics based onashed Htities




SR

SRO,, SRO,,, SR-N+,, SRO,, SRM,-*,

SR-M,-A0, SR-M,-Al, SR-M,-A2, SR-M,-A3,
SR-M,-A4, SR-M,.-A5, SR-M,.-AA, SR-M,.-AM-ADV,
SR-M,.-AM-CAU, SR-M,.-AM-DIR, SR-M,.-AM-DIS,
SR-M,-AM-EXT, SR-M,-AM-LOC, SR-M,.-AM-MNR,
SR-M,.-AM-MOD, SR-M,.-AM-NEG, SR-,.-AM-PNC,
SR-M,-AM-PRD, SR4V/,.-AM-REC, SRM,.-AM-TMP,
SR-M,,-x, SR-M,,-A0, SRM,.,-Al,

SR-M,.,-A2, SR-M,.,-A3, SR-M,.,-A4,

SR-M,.,-A5, SR-M,.,-AA, SR-M,.,-AM-ADV,
SR-M,.,-AM-CAU, SR-M,.,-AM-DIR, SR-M,.,-AM-DIS,
SR-M,.,-AM-EXT, SR-M,.,-AM-LOC, SR-M,.,-AM-MNR,
SR-M,,-AM-MOD, SR-M,.,-AM-NEG, SR-M,.,-AM-PNC,
SR-M,.,-AM-PRD, SR4/,.,-AM-REC, SRM,.,-AM-TMP,
SR-O,-%, SRO,-A0, SRO,-Al,

SR-0,-A2, SRO,-A3, SRO,-A4,

SR-0,-A5, SRO,-AA, SR-O,-AM-ADV,
SR-O,-AM-CAU, SR-O,-AM-DIR, SR-O,-AM-DIS,
SR-O,-AM-EXT, SR-O,-AM-LOC, SR-O,-AM-MNR,
SR-O,-AM-MOD, SR-O,-AM-NEG, SR-O,-AM-PNC,
SR-O,-AM-PRD, SRO,-AM-REC, SRO,-AM-TMP,
SR-O,.,-x, SRO,,-A0, SRO,.,-Al,

SR-0,,-A2, SRO,,-A3, SRO,,-A4,

SR-0,.,-A5, SRO,,-AA, SR-0,.,-AM-ADV,
SRO,.,-AM-CAU, SR-O,,-AM-DIR, SR-O,.,-AM-DIS,
SRO,.,-AM-EXT, SR-0O,.,-AM-LOC, SR-O,.,-AM-MNR,
SRO,.,~-AM-MOD, SR-O,.,~-AM-NEG, SR-O,.,~-AM-PNC,
SRO,,-AM-PRD, SRO,.,-AM-REC, SRO,.,-AM-TMP,
SR-M,-x-b, SRM,-%-i, SR-M,,,-*-b, SRM,.,,-%-i,
SR-O,-x-b, SRO,-*-i, SR-O,,-*-b, SRO,,-*-i }

Table C.6: Metrics based oreBantic Rles
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DR={ DR-O,-x, DR-O,-alfa, DR-O,-card, DRO,-dr, DR-O,-drs, DRO,-eq,
DR-O,-imp, DR-O,-merge, DRO,.-named, DRO,.-not, DR-O,.-or, DR-O,.-pred,
DR-O,-prop, DRO,-rel, DR-O,-smerge, DRO,-timex, DR-O,-whq, DR-O,,-x,
DR-O,,-alfa, DR-O,,-card, DRO,,,-dr, DR-O,,,-drs, DRO,,,-eq, DRO,,-imp,
DR-O,,-merge, DRO),,-named, DR©,,-not, DR-O,,-or, DR-O,,-pred,
DR-O,,-prop, DRO,-rel, DR-O,,-smerge, DR, ,-timex, DR-O,.,-whq,
DR-STM-1, DR-STM-2, DR-STM-3, DR-STM-4, DR-STM-5, DR-ST6|
DR-STM-7, DR-STM-8, DR-STM-9, DR-STMi-2, DR-STMi-3, DRI3/i-4,
DR-STMi-5, DR-STMi-6, DR-STMi-7, DR-STMi-8, DR-STMi-9,

DR-O,-x-b, DR-O,-%-i, DR-O,p-%-b, DR-O,,-%-i,
DR-STM-4-b, DR-STM-4-i }

Table C.7: Metrics based oniszourse Rpresentations
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